A FORMAL MODEL FOR DEFINING AND CLASSIFYING DELAY-INSENSITIVE CIRCUITS AND SYSTEMS

被引:68
作者
UDDING, JT
机构
[1] WASHINGTON UNIV,INST BIOMED COMP,ST LOUIS,MO 63110
[2] EINDHOVEN UNIV TECHNOL,DEPT COMP SCI,5600 MB EINDHOVEN,NETHERLANDS
关键词
COMPUTER SYSTEMS; DIGITAL - Distributed - MATHEMATICAL TECHNIQUES - Operators;
D O I
10.1007/BF01660032
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The author begins with an introduction to trace theory and discusses a composition operator, blending, in particular. Subsequently, he defines and classifies delay-insensitive components and illustrates the definitions with a number of examples. It turns out that, with this definition of delay-insensitivity, the specification of the composite of a set of properly composed delay-insensitive components can easily be expressed in terms of the specifications of the composing parts and the blend operator.
引用
收藏
页码:197 / 204
页数:8
相关论文
共 16 条
[1]  
BLACK DL, 1985, CMUCS85173 CARN U TE
[2]   ANOMALOUS BEHAVIOR OF SYNCHRONIZER AND ARBITER CIRCUITS [J].
CHANEY, TJ ;
MOLNAR, CE .
IEEE TRANSACTIONS ON COMPUTERS, 1973, C 22 (04) :421-422
[3]  
FANG TP, 1985, UNPUB PREVENTION PRO
[4]  
FANG TP, 1983, 298 WASH U COMP SYST
[5]  
Ginsburg S., 1966, MATH THEORY CONTEXT
[6]  
Hopcroft J.E., 1969, FORMAL LANGUAGES THE
[7]  
HURTADO M, 1975, 13TH P ANN ALL C CIR, P605
[8]   GENERAL-THEORY OF METASTABLE OPERATION [J].
MARINO, LR .
IEEE TRANSACTIONS ON COMPUTERS, 1981, 30 (02) :107-115
[9]  
MARTIN AJ, 1985, CALTECH5193TR85 COMP
[10]  
MILLER RE, 1965, SWITCHING THEORY, V2, pCH10