NUMERICAL INSTABILITIES IN BONE REMODELING SIMULATIONS - THE ADVANTAGES OF A NODE-BASED FINITE-ELEMENT APPROACH

被引:113
作者
JACOBS, CR
LEVENSTON, ME
BEAUPRE, GS
SIMO, JC
CARTER, DR
机构
[1] VET AFFAIRS MED CTR,CTR REHABIL RES & DEV,PALO ALTO,CA 94304
[2] STANFORD UNIV,DEPT MECH ENGN,STANFORD,CA 94305
基金
美国国家科学基金会;
关键词
D O I
10.1016/0021-9290(94)00087-K
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Long bone structure occurs in two distinct forms. The bone mass near the joint is primarily found in a distributed, porous trabecular structure, while in the diaphyses a tubular cortical structure is formed. It seems likely that these two observed morphologies come about, at least in part, as a mechanical adaptation to the different mechanical demands in the two regions, Mathematical formulations of this dependency have been proposed, thus facilitating numerical simulations of bone adaptation. Recently two types of discontinuities have been observed in these simulations. The first type (near-field) appears in areas near distributed load application and is characterized by a 'checkerboard' pattern of density wherein adjacent remodeled elements alternate between low and high density. The second type of discontinuity (far-field) appears remote from the load application and is characterized by strut or column-like regions of elements which become fully compact bone while adjacent regions are fully resorbed. In fact, the far-field discontinuity is an accurate representation of bone physiology and morphology since it is consistent with the appearance of cortical bone in the diaphysis. On the other hand, the near-field discontinuity, appears in a region where continuous distributions of intermediate apparent densities (trabecular bone) are expected. This finding may cause some to question whether a single continuum formulation of bone remodeling can predict both discontinuous far-field behavior and continuous near-field behavior. We describe a node-based implementation of current continuum bone remodeling theories which eliminates the spurious near-field discontinuities and preserves the anatomically correct far-field discontinuities, thus indicating that a single biological process may be at work in forming and maintaining both far-field and near-field morphologies.
引用
收藏
页码:449 / &
相关论文
共 30 条
[1]  
Anliker M, 1972, BIOMECHANICS ITS FDN, P237
[2]  
AOUBIZA B, 1992, RECENT ADVANCES IN COMPUTER METHODS IN BIOMECHANICS & BIOMEDICAL ENGINEERING, P288
[3]   AN APPROACH FOR TIME-DEPENDENT BONE MODELING AND REMODELING - APPLICATION - A PRELIMINARY REMODELING SIMULATION [J].
BEAUPRE, GS ;
ORR, TE ;
CARTER, DR .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1990, 8 (05) :662-670
[4]   AN APPROACH FOR TIME-DEPENDENT BONE MODELING AND REMODELING - THEORETICAL DEVELOPMENT [J].
BEAUPRE, GS ;
ORR, TE ;
CARTER, DR .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1990, 8 (05) :651-661
[5]   NONLOCAL FORMULATION OF THE EVOLUTION OF DAMAGE IN A ONE-DIMENSIONAL CONFIGURATION [J].
BREKELMANS, WAM .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1993, 30 (11) :1503-1512
[6]   RELATIONSHIPS BETWEEN LOADING HISTORY AND FEMORAL CANCELLOUS BONE ARCHITECTURE [J].
CARTER, DR ;
ORR, TE ;
FYHRIE, DP .
JOURNAL OF BIOMECHANICS, 1989, 22 (03) :231-244
[7]   COMPRESSIVE BEHAVIOR OF BONE AS A 2-PHASE POROUS STRUCTURE [J].
CARTER, DR ;
HAYES, WC .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1977, 59 (07) :954-962
[8]   TRABECULAR BONE-DENSITY AND LOADING HISTORY - REGULATION OF CONNECTIVE-TISSUE BIOLOGY BY MECHANICAL ENERGY [J].
CARTER, DR ;
FYHRIE, DP ;
WHALEN, RT .
JOURNAL OF BIOMECHANICS, 1987, 20 (08) :785-+
[9]   MECHANICAL LOADING HISTORY AND SKELETAL BIOLOGY [J].
CARTER, DR .
JOURNAL OF BIOMECHANICS, 1987, 20 (11-12) :1095-1109
[10]   BONE REMODELING .1. THEORY OF ADAPTIVE ELASTICITY [J].
COWIN, SC ;
HEGEDUS, DH .
JOURNAL OF ELASTICITY, 1976, 6 (03) :313-326