COVERING CONVEX-SETS WITH NONOVERLAPPING POLYGONS

被引:21
作者
EDELSBRUNNER, H [1 ]
ROBISON, AD [1 ]
SHEN, XJ [1 ]
机构
[1] E CHINA INST TECHNOL,DEPT COMP SCI,NANJING,PEOPLES R CHINA
关键词
D O I
10.1016/0012-365X(90)90147-A
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that given n≥3 convex, compact, and pairwise disjoint sets in the plane, they may be covered with n non-overlapping convex polygons with a total of not more than 6n-9 sides, and with not more than 3n-6 distinct slopes. Furthermore, we construct sets that require 6n-9 sides and 3n-6 slopes for n≥3. The upper bound on the number of slopes implies a new bound on a recently studied transversal problem. © 1990.
引用
收藏
页码:153 / 164
页数:12
相关论文
共 5 条
[1]  
EDELSBRUNNER H, IN PRESS DISCRETE CO
[2]  
FLORIAN A, 1987, GEOMETRIAE DEDICATA, V24, P363
[3]   GEOMETRIC PERMUTATIONS FOR CONVEX-SETS [J].
KATCHALSKI, M ;
LEWIS, T ;
ZAKS, J .
DISCRETE MATHEMATICS, 1985, 54 (03) :271-284
[4]   GEOMETRIC PERMUTATIONS AND COMMON TRANSVERSALS [J].
KATCHALSKI, M ;
LEWIS, T ;
LIU, A .
DISCRETE & COMPUTATIONAL GEOMETRY, 1986, 1 (04) :371-377
[5]  
WENGER R, 1986, TRSOCS8619 MCG U SCH