PERIODIC BOUNDARY-VALUE-PROBLEMS FOR NONLINEAR HIGHER-ORDER ORDINARY DIFFERENTIAL-EQUATIONS

被引:41
作者
SEDA, V [1 ]
NIETO, JJ [1 ]
GERA, M [1 ]
机构
[1] UNIV SANTIAGO DE COMPOSTELA, FAC MATEMAT, ANAL MATEMAT, SANTIAGO, SPAIN
关键词
D O I
10.1016/0096-3003(92)90019-W
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a class of boundary value problems for linear and nonlinear ordinary differential equations of higher order. We study the solution set and present a maximum principle. As a consequence we show the validity of the monotone method and obtain the extremal solutions between the upper and lower solutions.
引用
收藏
页码:71 / 82
页数:12
相关论文
共 10 条
[1]  
CICKIN ES, 1962, IZV VYSS UCEBN ZAVED, V2, P170
[2]  
Coddington A., 1955, THEORY ORDINARY DIFF
[3]  
GERA M, 1968, ACTA FAC RERUM NAT U, V19, P99
[4]   PERIODIC-SOLUTIONS OF SOME LIENARD AND DUFFING EQUATIONS [J].
GUPTA, CP ;
NIETO, JJ ;
SANCHEZ, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 140 (01) :67-82
[5]  
Kiguradze I. T., 1975, SOME SINGULAR BOUNDA
[6]   PERIODIC-SOLUTIONS FOR SCALAR LIENARD EQUATIONS [J].
NIETO, JJ ;
RAO, VSH .
ACTA MATHEMATICA HUNGARICA, 1991, 57 (1-2) :15-27
[7]  
NIETO JJ, IN PRESS PERIODIC SO
[8]   NONLINEAR 2ND-ORDER PERIODIC BOUNDARY-VALUE-PROBLEMS - REMARKS [J].
RUDOLF, B ;
KUBACEK, Z .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 146 (01) :203-206
[9]  
SEDA V, 1981, CZECH MATH J, V31, P531
[10]  
SEDA V, 1982, TEUBNER TEXTE MATH, V47, P318