AN 11-6-APPROXIMATION ALGORITHM FOR THE NETWORK STEINER PROBLEM

被引:206
作者
ZELIKOVSKY, AZ
机构
[1] Institute of Mathematics, Kishinev, 277028
关键词
STEINER TREE; APPROXIMATION ALGORITHM;
D O I
10.1007/BF01187035
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
An instance of the Network Steiner Problem consists of an undirected graph with edge lengths and a subset of vertices; the goal is to find a minimum cost Steiner tree of the given subset (i.e., minimum cost subset of edges which spans it). An 11/6-approximation algorithm for this problem is given. The approximate Steiner tree can be computed in the time O(Absolute value of V Absolute value of E + Absolute value of S4), where V is the vertex set, E is the edge set of the graph, and S is the given subset of vertices.
引用
收藏
页码:463 / 470
页数:8
相关论文
共 5 条
[1]  
Karp R.M., 1972, COMPLEXITY COMPUTER, P85
[2]   A FAST ALGORITHM FOR STEINER TREES [J].
KOU, L ;
MARKOWSKY, G ;
BERMAN, L .
ACTA INFORMATICA, 1981, 15 (02) :141-145
[3]  
KOU LT, 1990, ACTA INFORM, V27, P369, DOI 10.1007/BF00264613
[4]   A FASTER APPROXIMATION ALGORITHM FOR THE STEINER PROBLEM IN GRAPHS [J].
MEHLHORN, K .
INFORMATION PROCESSING LETTERS, 1988, 27 (03) :125-128
[5]   STEINER PROBLEM IN NETWORKS - A SURVEY [J].
WINTER, P .
NETWORKS, 1987, 17 (02) :129-167