HYDROPHOBIC BARRIERS OF LIPID BILAYER-MEMBRANES FORMED BY REDUCTION OF WATER PENETRATION BY ALKYL CHAIN UNSATURATION AND CHOLESTEROL

被引:287
作者
SUBCZYNSKI, WK
WISNIEWSKA, A
YIN, JJ
HYDE, JS
KUSUMI, A
机构
[1] MED COLL WISCONSIN,NATL BIOMED ESR CTR,BIOPHYS RES INST,MILWAUKEE,WI 53226
[2] UNIV TOKYO,DEPT PURE & APPL SCI,MEGURO KU,TOKYO 153,JAPAN
关键词
D O I
10.1021/bi00190a022
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The hydrophobicity profiles across phosphatidylcholine (PC)-cholesterol bilayer membranes were estimated in both frozen liposome suspensions and fluid-phase membranes as a function of alkyl chain length, unsaturation, and cholesterol mole fraction. A series of stearic acid spin labels, with the probe attached to various positions along the alkyl chain, cholesterol-type spin labels (cholestane and androstane spin labels), and Tempo-PC were used to examine depth-dependent changes in local hydrophobicity, which is determined by the extent of water penetration into the membrane. Local hydrophobicity was monitored primarily by observing the z component of the hyperfine interaction tenser (A(z)) of the nitroxide spin probe in a frozen suspension of the membrane at -150 degrees C and was further confirmed in the fluid phase by observing the rate of collision of Fe(CN)(6)(3-) with the spin probe in the membrane using saturation recovery ESR. Saturated-PC membranes show low hydrophobicity (high polarity) across the membrane, comparable to 2-propanol and 1-octanol, even at the membrane center where hydrophobicity is highest. Longer alkyl chains only make the central hydrophobic regions wider without increasing the level of hydrophobicity. Introduction of a double bond at C9-C10 decreases the level of water penetration at all locations in the membrane, and this effect is considerably greater than the cis configuration than with the trans configuration. Incorporation of cholesterol (30 mol %) dramatically changes the profiles; it decreases hydrophobicity (increases water penetration) from the polar headgroup region to a depth of approximately C7 and C9 for saturated- and unsaturated-PC membranes, respectively, which is about where the bulky rigid steroid ring structure of cholesterol reaches in the membrane. Membrane hydrophobicity sharply increases at these positions from the level of methanol to the level of pure hexane, and hydrophobicity is constant in the inner region of the membrane. Thus, formation of effective hydrophobic barriers to permeation of small polar molecules requires alkyl chain unsaturation and/or cholesterol. The thickness of this rectangular hydrophobic barrier is less than 50% of the thickness of the hydrocarbon regions. Results obtained in dioleoyl-PC-cholesterol membranes in the fluid phase are similar to those obtained in frozen membranes. These results correlate well with permeability data for water and amino acids in the literature.
引用
收藏
页码:7670 / 7681
页数:12
相关论文
共 61 条
[1]  
ANDREWS DM, 1971, J MEMBRANE BIOL, V5, P277
[2]   SOLUTE DIFFUSION IN LIPID BILAYER-MEMBRANES - AN ATOMIC-LEVEL STUDY BY MOLECULAR-DYNAMICS SIMULATION [J].
BASSOLINOKLIMAS, D ;
ALPER, HE ;
STOUCH, TR .
BIOCHEMISTRY, 1993, 32 (47) :12624-12637
[3]   STRUCTURE OF POLYMERIZABLE LIPID BILAYERS - WATER PROFILE OF A DIACETYLENIC LIPID BILAYER USING ELASTIC NEUTRON-SCATTERING [J].
BLECHNER, SL ;
SKITA, V ;
RHODES, DG .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1022 (03) :291-295
[4]   STUDIES OF THE RELATIONSHIP BETWEEN BILAYER WATER PERMEABILITY AND BILAYER PHYSICAL STATE [J].
CARRUTHERS, A ;
MELCHIOR, DL .
BIOCHEMISTRY, 1983, 22 (25) :5797-5807
[5]   PERMEABILITY OF LIPID BILAYERS TO AMINO-ACIDS AND PHOSPHATE [J].
CHAKRABARTI, AC ;
DEAMER, DW .
BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1111 (02) :171-177
[6]  
CHAPLIN DB, 1983, BIOCHIM BIOPHYS ACTA, V731, P465
[7]   HYPERFINE INTERACTIONS IN PERTURBED NITROXIDES [J].
COHEN, AH ;
HOFFMAN, BM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1973, 95 (06) :2061-2062
[8]  
DAEMER DW, 1986, CHEM PHYS LIPIDS, V40, P167
[9]   INTERPRETATION OF NONELECTROLYTE PARTITION-COEFFICIENTS BETWEEN DIMYRISTOYL LECITHIN AND WATER [J].
DIAMOND, JM ;
KATZ, Y .
JOURNAL OF MEMBRANE BIOLOGY, 1974, 17 (02) :121-154
[10]   IONIZATION OF FATTY-ACIDS AT LIPID-WATER INTERFACE [J].
EGRETCHARLIER, M ;
SANSON, A ;
PTAK, M ;
BOULOUSSA, O .
FEBS LETTERS, 1978, 89 (02) :313-316