MAGNETIC-SUSCEPTIBILITY OF O(N) SIGMA-MODELS IN 2D - WEAK-COUPLING RESULTS FROM 1/N EXPANSION

被引:16
作者
FLYVBJERG, H
LARSEN, F
机构
[1] Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen Ø
关键词
D O I
10.1016/0370-2693(91)90750-K
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The magnetic susceptibilities of the non-linear sigma-models in 2D are given to three leading orders in 1/N as functions of the inverse bare coupling beta and up to correlation lengths 150. Within the systematic error introduced by truncating the 1/N expansion, our results agree with Monte Carlo results for N greater-than-or-equal-to 3. We argue that the 1/N series is convergent with a beta-dependent radius of convergence approaching 1/2 at weak coupling, and use this to predict the value for the magnetic susceptibility at asymptotically weak coupling. Our calculation features "Fourier accelerated" numerical evaluation of Feynman diagrams, and extrapolation of finite volume results to infinite volume by phenomenological scaling.
引用
收藏
页码:99 / 106
页数:8
相关论文
共 23 条
[1]  
BARBER MN, 1983, PHASE TRANSITIONS CR, V8, P146
[2]   VOLUME DEPENDENCE OF THE MASS GAP FOR THE O(3) NONLINEAR SIGMA-MODEL - A MONTE-CARLO STUDY [J].
BENDER, I ;
WETZEL, W ;
BERG, B .
NUCLEAR PHYSICS B, 1986, 269 (02) :389-409
[3]   QUANTITATIVE PICTURE OF THE SCALING BEHAVIOR OF LATTICE NONLINEAR SIGMA-MODELS FROM THE 1/N EXPANSION [J].
BISCARI, P ;
CAMPOSTRINI, M ;
ROSSI, P .
PHYSICS LETTERS B, 1990, 242 (02) :225-233
[4]  
BISCARI P, 1990, PHYS LETT B, V255, P89
[5]   RENORMALIZATION OF NONLINEAR SIGMA-MODEL IN 2+ EPSILON-DIMENSIONS-APPLICATION TO HEISENBERG FERROMAGNETS [J].
BREZIN, E ;
ZINJUSTIN, J .
PHYSICAL REVIEW LETTERS, 1976, 36 (13) :691-694
[6]  
BREZIN E, 1976, PHYS REV B, V14, P985
[7]   CLASSICAL O(N) HEISENBERG-MODEL - EXTENDED HIGH-TEMPERATURE SERIES FOR 2, 3, AND 4 DIMENSIONS [J].
BUTERA, P ;
COMI, M ;
MARCHESINI, G .
PHYSICAL REVIEW B, 1990, 41 (16) :11494-11507
[8]   SCALING PROPERTIES OF CONDENSATES IN THE 1/N EXPANSION OF LATTICE NONLINEAR SIGMA-MODELS [J].
CAMPOSTRINI, M ;
ROSSI, P .
PHYSICS LETTERS B, 1990, 242 (01) :81-88
[9]   DYNAMIC CRITICAL-BEHAVIOR OF WOLFF COLLECTIVE-MODE MONTE-CARLO ALGORITHM FOR THE TWO-DIMENSIONAL O(N) NONLINEAR SIGMA-MODEL [J].
EDWARDS, RG ;
SOKAL, AD .
PHYSICAL REVIEW D, 1989, 40 (04) :1374-1377
[10]   SOME EXACT RESULTS FOR THE O(N)-SYMMETRICAL NONLINEAR SIGMA-MODEL TO O(1/N) [J].
FLYVBJERG, H .
NUCLEAR PHYSICS B, 1991, 348 (03) :714-736