REACTIVE-DIFFUSIVE SYSTEM WITH ARRHENIUS KINETICS - PECULIARITIES OF THE SPHERICAL GEOMETRY

被引:24
作者
KAPILA, AK
MATKOWSKY, BJ
VEGA, J
机构
[1] DEPT ENGN SCI & APPL MATH,EVANSTON,IL 60201
[2] UNIV POLITECH MADRID,ESCUELA TECNICAL SUPER INGN AERONAUT,MADRID,SPAIN
关键词
D O I
10.1137/0138032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The steady reactive-diffusive problem for a nonisothermal permeable pellet with first-order Arrhenius kinetics is studied. In the large activation-energy limit, asymptotic solutions are derived for the spherical geometry. The solutions exhibit multiplicity, and it is shown that a suitable choice of parameters can lead to an arbitrarily large number of solutions, thereby confirming a conjecture based upon past computational experiments. Explicit analytical expressions are given for the multiplicity bounds (ignition and extinction limits). The asymptotic results compare very well with those obtained numerically, even for moderate values of the activation energy.
引用
收藏
页码:382 / 401
页数:20
相关论文
共 18 条
[1]  
Aris R., 1975, MATH THEORY DIFFUSIO, VI
[2]  
Aris R., 1975, MATH THEORY DIFFUSIO
[3]  
BAUER L, 1973, NONLINEAR ELASTICITY
[4]   MEMBRANE BUCKLING - STUDY OF SOLUTION MULTIPLICITY [J].
CALLEGARI, AJ ;
REISS, EL ;
KELLER, HB .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1971, 24 (04) :499-+
[5]   THE ISOTHERMAL FUNCTION [J].
CHANDRASEKHAR, S ;
WARES, GW .
ASTROPHYSICAL JOURNAL, 1949, 109 (03) :551-551
[6]  
COHEN DS, 1973, NONLINEAR PROBLEMS P
[7]   COMMUNICATIONS ON THEORY OF DIFFUSION AND REACTION .5. FINDINGS AND CONJECTURES CONCERNING MULTIPLICITY OF SOLUTIONS [J].
COPELOWI.I ;
ARIS, R .
CHEMICAL ENGINEERING SCIENCE, 1970, 25 (05) :906-&
[8]  
EMDEN R, 1907, GASKUGELN ANWENDUG M
[9]  
FRANKKAMENETSKI.DA, 1969, DIFFUSION HEAT TRANS
[10]  
Gelfand IM, 1963, T AM MATH SOC SER, V2, P295