SYMBOLIC LOCAL REFINEMENT OF TETRAHEDRAL GRIDS

被引:16
作者
HEBERT, DJ
机构
[1] Department of Mathematics and Statistics, Pittsburgh
关键词
D O I
10.1006/jsco.1994.1029
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A recent local grid refinement algorithm for simplicial grids is shown to be suitable for symbolic implementation in the 3-dimensional case. An addressing scheme stores all the geometric information about the tetrahedra in the refinement tree. Location of vertices and the addresses of physically nearest neighbors are computed by decoding the symbols of the simplex address. Bisection and face-compatible refinement of the simplex and its splitting neighbors are obtained by symbolic and logical operations on the leaves of the tree.
引用
收藏
页码:457 / 472
页数:16
相关论文
共 17 条
[1]  
Allgower E., 1979, UTILITAS MATHEMATICA, V16, P123
[2]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[3]   DEVELOPMENTS AND TRENDS IN 3-DIMENSIONAL MESH GENERATION [J].
BAKER, TJ .
APPLIED NUMERICAL MATHEMATICS, 1989, 5 (04) :275-304
[4]  
Bansch E., 1991, Impact of Computing in Science and Engineering, V3, P181, DOI 10.1016/0899-8248(91)90006-G
[5]  
FERRUCCI V, 1991, COMPUT AIDED DESIGN, V23, P40, DOI 10.1016/0010-4485(91)90080-G
[6]   MESH RELAXATION - A NEW TECHNIQUE FOR IMPROVING TRIANGULATIONS [J].
FREY, WH ;
FIELD, DA .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1991, 31 (06) :1121-1133
[7]  
HEBERT DJ, 1992, ICMA92176 U PITTSB D
[8]  
Knupp P., 1993, FUNDAMENTALS GRID GE
[9]  
MAUBACH JM, 1994, IN PRESS SIAM J SCI
[10]  
McCormick S. F., 1989, MULTILEVEL ADAPTIVE