ON SINGULAR TOPOLOGIES IN EXACT LAYOUT OPTIMIZATION

被引:86
作者
ROZVANY, GIN
BIRKER, T
机构
[1] FB 10, Essen University, Essen, D-45117
来源
STRUCTURAL OPTIMIZATION | 1994年 / 8卷 / 04期
关键词
Optimization;
D O I
10.1007/BF01742707
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The causes of singular structural topologies, which prevent most iterative computational algorithms from reaching the global optimal solution, are explained in the light of the theory of exact optimal layouts. This theory is also used for deriving eight fundamental characteristics of singular topologies. The above findings are illustrated with case studies of exact optimal layouts for a single load and for two load conditions with stress constraints.
引用
收藏
页码:228 / 235
页数:8
相关论文
共 19 条
[1]  
Barta J., On the minimum weight of certain redundant structures, Acta Techn. Acad. Sci. Hung., 18, pp. 67-76, (1957)
[2]  
Birker T., Lewinski T., Rozvany G.I.N., A well-posed non-selfadjoint layout problem: least-weight plane truss for one load condition and two displacement constraints, Struct. Optim., 8, pp. 195-205, (1994)
[3]  
Cheng G., Jiang Z., Study on topology optimization with stress constraints, Engineering Optimization, 20, pp. 129-148, (1992)
[4]  
Dorn W.S., Gomory R.E., Greenberg H.J., Automatic design of optimal structures, J. de Mécanique, 3, pp. 25-52, (1964)
[5]  
Kirsch U., On singular topologies in optimum structural design, Struct. Optim., 2, pp. 133-142, (1990)
[6]  
Kirsch U., Singular and local optima in structural optimization, Proc. AIAA/NASA/USAF/ISSMO Symp. on Multidisciplinary Analysis and Optimization (held in Panama City, FL, Sept. 1994), pp. 150-160, (1994)
[7]  
Lewinski T., Zhou M., Rozvany G.I.N., Extended exact solutions for least-weight truss layouts. Parts I, II, Int. J. Mech. Sci., 36, pp. 375-398, (1994)
[8]  
Michell A.G.M., The limits of economy of material in framestructures, Philosophical Magazine Series 6, 8, pp. 589-597, (1904)
[9]  
Prager W., Optimal layout of trusses with a finite number of joints, J. Mech. Phys. Solids, 26, pp. 241-250, (1978)
[10]  
Prager W., Shield R.T., A general theory of optimal plastic design, Journal of Applied Mechanics, 34, pp. 184-186, (1967)