INHIBITION OF ENERGY-METABOLISM BY 3-NITROPROPIONIC ACID ACTIVATES ATP-SENSITIVE POTASSIUM CHANNELS

被引:95
作者
RIEPE, M [1 ]
HORI, N [1 ]
LUDOLPH, AC [1 ]
CARPENTER, DO [1 ]
SPENCER, PS [1 ]
ALLEN, CN [1 ]
机构
[1] WADSWORTH CTR LABS & RES, ALBANY, NY USA
关键词
3-NITROPROPIONIC ACID (3-NPA); HISTOTOXIC HYPOXIA; OXIDATIVE PHOSPHORYLATION; ATP; POTASSIUM CHANNEL; GLIBENCLAMIDE; DIAZOXIDE; GLUTAMATE ANTAGONISTS;
D O I
10.1016/0006-8993(92)91371-K
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
3-Nitropropionic acid (1 mM), which inhibits succinate dehydrogenase activity and reduces cellular energy, produces in the pyramidal cell layer of the hippocampal region CA1 a hyperpolarization for variable lengths of time before evoking an irreversible depolarization. Hyperpolarization is caused by an increased potassium conductance that is attenuated by glibenclamide (1-10-mu-M), a selective antagonist of ATP-sensitive potassium channels; in contrast, diazoxide (0.5 mM), an agonist at this channel, induces a hyperpolarization in CA1 neurons of rat hippocampal slices. The transient hyperpolarization after prolonged (ca. 1 h) application of 3-NPA is followed by a depolarization that is incompletely reversed by brief application of the glutamate antagonists (D-2-amino-5-phosphonopentanoic acid (APV), 6,7-dichloroquinoxaline-2,3-dione (CNQX), 3-(+/-)-2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP), 7-chloro-kynurenic acid (7Cl-KYN)). Early application of glibenclamide (within the initial 5 min) blocked or reduced hyperpolarization and accelerated the depolarization. These data suggest that metabolic inhibition by 3-NPA initially activates ATP-sensitive potassium channels. Events other than activation of glutamate receptors participate in the final depolarization resulting from uncoupling of oxidative phosphorylation.
引用
收藏
页码:61 / 66
页数:6
相关论文
共 50 条
[1]   POTASSIUM CHANNEL ACTIVATORS ABOLISH EXCITOTOXICITY IN CULTURED HIPPOCAMPAL PYRAMIDAL NEURONS [J].
ABELE, AE ;
MILLER, RJ .
NEUROSCIENCE LETTERS, 1990, 115 (2-3) :195-200
[2]   3-NITROPROPIONATE, TOXIC SUBSTANCE OF INDIGOFERA, IS A SUICIDE INACTIVATOR OF SUCCINATE-DEHYDROGENASE - (RAT-LIVER MITOCHONDRIA CARBANION-N-5 FLAVIN ADDUCTS 2-PROTON ABSTRACTION MECHANISM) [J].
ALSTON, TA ;
MELA, L ;
BRIGHT, HJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (09) :3767-3771
[3]   GLUCOSE, SULFONYLUREAS, AND NEUROTRANSMITTER RELEASE - ROLE OF ATP-SENSITIVE K+ CHANNELS [J].
AMOROSO, S ;
SCHMIDANTOMARCHI, H ;
FOSSET, M ;
LAZDUNSKI, M .
SCIENCE, 1990, 247 (4944) :852-854
[4]   THE BINDING-SITE FOR [H-3] GLIBENCLAMIDE IN THE RAT CEREBRAL-CORTEX DOES NOT RECOGNIZE K-CHANNEL AGONISTS OR ANTAGONISTS OTHER THAN SULFONYLUREAS [J].
ANGEL, I ;
BIDET, S .
FUNDAMENTAL & CLINICAL PHARMACOLOGY, 1991, 5 (02) :107-115
[5]   ADENOSINE-5'-TRIPHOSPHATE-SENSITIVE ION CHANNELS IN NEONATAL RAT CULTURED CENTRAL NEURONS [J].
ASHFORD, MLJ ;
STURGESS, NC ;
TROUT, NJ ;
GARDNER, NJ ;
HALES, CN .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1988, 412 (03) :297-304
[6]   GLUCOSE-INDUCED EXCITATION OF HYPOTHALAMIC NEURONS IS MEDIATED BY ATP-SENSITIVE K+ CHANNELS [J].
ASHFORD, MLJ ;
BODEN, PR ;
TREHERNE, JM .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1990, 415 (04) :479-483
[7]   CHANGES OF MEMBRANE CURRENTS IN CARDIAC-CELLS INDUCED BY LONG WHOLE-CELL RECORDINGS AND TOLBUTAMIDE [J].
BELLES, B ;
HESCHELER, J ;
TRUBE, G .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1987, 409 (06) :582-588
[8]  
Ben Ari Y, 1989, Pflugers Arch, V414 Suppl 1, pS111, DOI 10.1007/BF00582258
[9]   ACTIVATORS OF ATP-SENSITIVE K+ CHANNELS REDUCE ANOXIC DEPOLARIZATION IN CA3 HIPPOCAMPAL-NEURONS [J].
BENARI, Y ;
KRNJEVIC, K ;
CREPEL, V .
NEUROSCIENCE, 1990, 37 (01) :55-60
[10]  
BENARI Y, 1990, EXCITATORY AMINO ACI, P481