DYNAMIC-PROGRAMMING APPROACH TO STOCHASTIC EVOLUTION EQUATIONS

被引:73
作者
ICHIKAWA, A [1 ]
机构
[1] UNIV WARWICK,CTR CONTROL THEORY,COVENTRY CV4 7AL,WARWICKSHIRE,ENGLAND
关键词
Compendex;
D O I
10.1137/0317012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Stochastic regulator problems and optimal stationary control as well as stability are studied for inifinite dimensional systems with state and control dependent noise. The stochastic model is described by a semigroup and Wiener processes in Hilbert space and W. M. Wonham's approach using differential generators and dynamic programming is extended to infinite dimensions.
引用
收藏
页码:152 / 174
页数:23
相关论文
共 17 条
[1]  
CHOJNOWSKAMICHA.A, 1977, THESIS I MATH POLISH
[2]   INFINITE-DIMENSIONAL RICCATI EQUATION FOR SYSTEMS DEFINED BY EVOLUTION OPERATORS [J].
CURTAIN, R ;
PRITCHARD, AJ .
SIAM JOURNAL ON CONTROL, 1976, 14 (05) :951-983
[3]   ITOS LEMMA IN INFINITE DIMENSIONS [J].
CURTAIN, RF ;
FALB, PL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1970, 31 (02) :434-&
[4]   ESTIMATION THEORY FOR ABSTRACT EVOLUTION EQUATIONS EXCITED BY GENERAL WHITE NOISE PROCESSES [J].
CURTAIN, RF .
SIAM JOURNAL ON CONTROL, 1976, 14 (06) :1124-1150
[5]   SEPARATION PRINCIPLE FOR STOCHASTIC EVOLUTION EQUATIONS [J].
CURTAIN, RF ;
ICHIKAWA, A .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1977, 15 (03) :367-383
[6]  
Datko R., 1970, Journal of Mathematical Analysis and Applications, V32, P610, DOI 10.1016/0022-247X(70)90283-0
[7]  
HAUSSMANN UG, UNPUBLISHED
[8]  
HILLE E, 1957, 33 AM MATH SOC C PUB
[9]  
ICHIKAWA A, 1977, 57 U WARW CONTR THEO
[10]  
ICHIKAWA A, 1976, RECENT THEORETICAL D