SUBMICROMETER FLUID INCLUSIONS IN TURBID-DIAMOND COATS

被引:70
作者
GUTHRIE, GD
VEBLEN, DR
NAVON, O
ROSSMAN, GR
机构
[1] UNIV CALIF LOS ALAMOS SCI LAB,LOS ALAMOS,NM 87545
[2] JOHNS HOPKINS UNIV,DEPT EARTH & PLANETARY SCI,BALTIMORE,MD 21218
[3] DEPT GEOL & PLANETARY SCI,PASADENA,CA 91125
基金
美国国家科学基金会;
关键词
ELECTRON-PROBE; MANTLE; PRESSURE; COESITE; TEMPERATURE; KIMBERLITE; ORIGIN; GROWTH; CARBON; QUARTZ;
D O I
10.1016/0012-821X(91)90116-Y
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Transmission and analytical electron microscopies were used to characterize the turbid coats on two diamonds from Zaire. The coats contained euhedral cavities (generally less-than-or-equal-to 0.5-mu-m) that are believed to represent decrepit fluid inclusions. Crystals (generally less-than-or-equal-to 0.2-mu-m) were sometimes found in the cavities, but they were never observed to fill the cavities entirely. Cavities that appeared to be intact typically contained several solid inclusions and an amorphous material with a low average atomic weight. The crystals in such cavities were able to move under a condensed electron beam, suggesting that the amorphous material was a liquid and not a glass. Using compositional analysis and electron diffraction, five minerals were identified as daughter crystals in the cavities: apatite, high-Ca carbonate, low-Ca carbonate, mica, and quartz. Coesite and olivine were not observed in any of the cavities. Compositional analysis of some crystals indicated that other minerals (e.g., amphibole) were present as daughter crystals; however, electron diffraction data were insufficient to identify them unambiguously. Since these inclusions are believed to have been trapped during the growth of the diamond coats [1], it may be possible to constrain the environment under which the coats grew, assuming that the daughter minerals precipitated from the trapped fluid and that the fluid inclusions have not re-equilibrated. Coexisting magnesite-like and dolomite-like carbonates and silica constrain X(CO2) of the fluid to greater than 0.4. The presence of quartz is consistent with the coats developing at lower pressures and temperatures than the cores they surround; alternatively, quartz grew from a glass or a high-P, high-T silica polymorph (coesite) when the inclusions re-equilibrated in the quartz stability field.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 40 条