VERTEX-PRIMITIVE DIGRAPHS OF PRIME-POWER ORDER ARE HAMILTONIAN

被引:2
作者
XU, MY [1 ]
机构
[1] BEIJING UNIV,INST MATH,BEIJING 100871,PEOPLES R CHINA
基金
中国国家自然科学基金;
关键词
D O I
10.1016/0012-365X(94)90134-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Witte [6] proved that every connected Cayley digraph of a p-group is hamiltonian. In this note we generalize Witte's result to connected vertex-primitive digraphs of prime-power order namely, we prove that every connected vertex-primitive digraph of prime-power order is hamiltonian.
引用
收藏
页码:415 / 417
页数:3
相关论文
共 6 条
[1]  
Biggs N, 1993, ALGEBRAIC GRAPH THEO, V67
[2]   SUBGROUPS OF PRIME POWER INDEX IN A SIMPLE-GROUP [J].
GURALNICK, RM .
JOURNAL OF ALGEBRA, 1983, 81 (02) :304-311
[4]   ON THE ONAN-SCOTT THEOREM FOR FINITE PRIMITIVE PERMUTATION-GROUPS [J].
LIEBECK, MW ;
PRAEGER, CE ;
SAXL, J .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1988, 44 :389-396
[5]  
Wielandt H., 1964, FINITE PERMUTATION G
[6]   CAYLEY DIGRAPHS OF PRIME-POWER ORDER ARE HAMILTONIAN [J].
WITTE, D .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 40 (01) :107-112