ADAPTIVE-CONTROL OF MARKOV-CHAINS - FINITE PARAMETER SET

被引:67
作者
BORKAR, V [1 ]
VARAIYA, P [1 ]
机构
[1] UNIV CALIF BERKELEY,ELECTR RES LAB,BERKELEY,CA 94720
关键词
D O I
10.1109/TAC.1979.1102191
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Consider a controlled Markov chain whose transition probabilities depend upon an unknown parameter a taking values in finite set A. To each a is associated a prespecified stationary control law ϕ(ðŗ‚). The adaptive control law selects at each time t the control action indicated by ϕ(ðŗ‚1) where ϕ(ðŗ‚1) is the maximum likelihood estimate of a. It is shown that (ðŗ‚1) converges to a parameter ðŗ‚* such that the “closed-loop” transition probabilities corresponding to a* and ϕ(ðŗ‚*) are the same as those corresponding to ðŗ‚0 and ϕ(ðŗ‚*) where ðŗ‚0 is the true parameter. The situation when ðŗ‚0 does not belong to the model setA is briefly discussed. Copyright © 1979 by The Institute of Electricala and Electronics Engineers Inc.
引用
收藏
页码:953 / 957
页数:5
相关论文
共 8 条
[1]   SELF TUNING REGULATORS [J].
ASTROM, KJ ;
WITTENMARK, B .
AUTOMATICA, 1973, 9 (02) :185-199
[2]   INFORMATION THEORETIC APPROACH TO DYNAMICAL-SYSTEMS MODELING AND IDENTIFICATION [J].
BARAM, Y ;
SANDELL, NR .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1978, 23 (01) :61-66
[3]   CONSISTENT ESTIMATION ON FINITE PARAMETER SETS WITH APPLICATION TO LINEAR-SYSTEMS IDENTIFICATION [J].
BARAM, Y ;
SANDELL, NR .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1978, 23 (03) :451-454
[4]  
LJUNG L, 1974, TFRT3071 LUND I TECH
[5]  
Loeve M., 1960, PROBABILITY THEORY
[6]  
Mandl P., 1974, Advances in Applied Probability, V6, P40, DOI 10.2307/1426206
[7]  
Martin James John, 1967, BAYESIAN DECISION PR
[8]  
VANHEE KM, 1978, BAYESIAN CONTROL MAR