STABILITY OF HIGHER-ORDER HOOD-TAYLOR METHODS

被引:131
作者
BREZZI, F
FALK, RS
机构
[1] PURDUE UNIV, CTR APPL MATH, W LAFAYETTE, IN 47907 USA
[2] RUTGERS STATE UNIV, DEPT MATH, NEW BRUNSWICK, NJ 08903 USA
[3] UNIV PAVIA, DIPARTIMENTO MECCAN STRUTTURALE, I-27100 PAVIA, ITALY
关键词
STOKES; FINITE ELEMENT;
D O I
10.1137/0728032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The stability of a higher-order Hood-Taylor method for the approximation of the stationary Stokes equations using continuous piecewise polynomials of degree 3 to approximate velocities and continuous piecewise polynomials of degree 2 to approximate the pressure is proved. This result implies that the standard finite element method using these spaces satisfies a quasi-optimal error estimate. The technique used may also be applied to prove the stability of Hood-Taylor rectangular elements of arbitrary degree k for velocities and k - 1 for pressure in each variable.
引用
收藏
页码:581 / 590
页数:10
相关论文
共 9 条
[1]   ERROR ESTIMATES FOR FINITE-ELEMENT METHOD SOLUTION OF THE STOKES PROBLEM IN THE PRIMITIVE VARIABLES [J].
BERCOVIER, M ;
PIRONNEAU, O .
NUMERISCHE MATHEMATIK, 1979, 33 (02) :211-224
[2]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[3]  
BREZZI F, UNPUB MIXED HYBRID F
[4]  
Ciarlet P. G., 2002, FINITE ELEMENT METHO
[5]  
Girault V., 1986, FINITE ELEMENT METHO, V5
[6]  
HOOD P, 1973, COMPUT FLUIDS, V1, P73
[7]  
SCOTT LR, 1985, RAIRO MATH MODEL NUM, V19
[8]  
STENBERG R, 1990, MATH COMPUT, V54, P495, DOI 10.1090/S0025-5718-1990-1010601-X
[9]  
VERFURTH R, 1984, RAIRO-ANAL NUMER-NUM, V18, P175