RESONANCE-ENHANCED MULTIPHOTON IONIZATION PHOTOELECTRON-SPECTROSCOPY ON NANOSECOND AND PICOSECOND TIME SCALES OF RYDBERG STATES OF METHYL-IODIDE

被引:60
作者
DOBBER, MR
BUMA, WJ
DELANGE, CA
机构
[1] Laboratory for Physical Chemistry, University of Amsterdam, 1018 WS Amsterdam
关键词
D O I
10.1063/1.465347
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rydberg states of methyl iodide have been investigated using resonance enhanced multiphoton ionization in combination with photoelectron spectroscopy with nanosecond and picosecond laser pulses. The study of the ns (6 less-than-or-equal-to n less-than-or-equal-to 10) Rydberg states in two-, three-, and four-photon excitations has resulted in an unambiguous identification of state [1] in the 7s and 8s Rydberg states. As a consequence, it is concluded that the transition to 6s[1] in two- and three-photon excitations is anomalously weak. The application of photoelectron spectroscopy to identify the electronic and vibrational nature of a resonance has led to a major reinterpretation of the excitation spectrum of the 6p Rydberg state in two-photon excitation. In many of the recorded photoelectron spectra anomalous electrons are observed, which derive from a one-photon ionization process. This process is suggested to find its origin in the mixing of 6p and 7s character into higher-lying Rydberg states. The major difference between resonance enhanced multiphoton ionization photoelectron spectroscopy with nanosecond and picosecond lasers is found in a less effective dissociation of the molecule in the picosecond experiments.
引用
收藏
页码:836 / 853
页数:18
相关论文
共 61 条