DIFFERENTIAL COVARIANT FORMALISM FOR SOLVING MAXWELLS EQUATIONS IN CURVILINEAR COORDINATES - OBLIQUE SCATTERING FROM LOSSY PERIODIC SURFACES

被引:23
作者
PLUMEY, JP [1 ]
GRANET, G [1 ]
CHANDEZON, J [1 ]
机构
[1] INST NATL TELECOMMUN,F-91011 EVRY,FRANCE
关键词
D O I
10.1109/8.402203
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A rigorous differential method describing the diffraction properties of lossy periodic surfaces is presented. A nonorthogonal coordinate system and a covariant formalism of Maxwell's equation are used simplifying boundary conditions expression. Only one eigenvalue system, unique for the TE and TM polarizations even for an oblique incidence, needs to be solved. Thus the numerical treatment is very efficient and CPU requirements significantly reduced. Numerical results are successfully compared with those obtained by an integral method using the boundary element method (BEM) as a numerical procedure.
引用
收藏
页码:835 / 842
页数:8
相关论文
共 12 条
  • [1] Petit R., Electromagnetic Theory of Gratings. Berlin: Springer-Verlag, (1980)
  • [2] Janaswamy R., Oblique scattering from lossy periodic surfaces with applications to anechoic chambers absorbers, IEEE Trans. Antennas Propagat., 40, pp. 162-169, (1992)
  • [3] Nakata Y., Koshiba M., Boundary-element analysis of plane-wave diffraction from groove-type dielectric end metallic gratings, J. Opt. Soc. Am. A, 7, 8, pp. 1494-1502, (1990)
  • [4] Moharam M.G., Gaylord T.K., Rigorous coupled-wave analysis of metallic surface-relief gratings, J. Opt. Soc. Am. A, 3, 11, pp. 1780-1787, (1986)
  • [5] Chandezon J., Dupuis M.T., Cornet G., Maystre D., Multicoated gratings: A differential formalism applicable in the entire optical domain, J. Opt. Soc. Am., 72, 7, pp. 839-846, (1982)
  • [6] Post E.J., Formal Structure of Electromagnetics. Amsterdam: North-Holland, (1962)
  • [7] Chandezon J., Les équations de Maxwell sous forme covariante. Application á l’étude de la propagation dans les guides périodiques et á la diffraction par des réseaux, these no 261, (1979)
  • [8] Lichnerowicz, (1954)
  • [9] Harrington R.F., Time-Harmonic Fields. New York: McGraw-Hill, (1961)
  • [10] Popov E., Mashev L., Conical diffraction mounting. Generalization of a rigorous differential method, J. Optics, 17, 4, pp. 175-180, (1986)