CONJUGATE-GRADIENT NEURAL NETWORKS IN CLASSIFICATION OF MULTISOURCE AND VERY-HIGH-DIMENSIONAL REMOTE-SENSING DATA

被引:79
作者
BENEDIKTSSON, JA
SWAIN, PH
ERSOY, OK
机构
[1] UNIV ICELAND,INFORMAT TECHNOL & SIGNAL PROC LAB,IS-107 REYKJAVIK,ICELAND
[2] PURDUE UNIV,SCH ELECT ENGN,W LAFAYETTE,IN 47907
[3] PURDUE UNIV,APPLICAT REMOTE SENSING LAB,W LAFAYETTE,IN 47907
基金
美国国家航空航天局;
关键词
D O I
10.1080/01431169308904316
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Application of neural networks to classification of remote sensing data is discussed. Conventional two-layer backpropagation is found to give good results in classification of remote sensing data but is not efficient in training. A more efficient variant, based on conjugate-gradient optimization, is used for classification of multisource remote sensing and geographic data and very-high-dimensional data. The conjugate-gradient neural networks give excellent performance in classification of multisource data but do not compare as well with statistical methods in classification of very-high-dimensional data.
引用
收藏
页码:2883 / 2903
页数:21
相关论文
共 31 条
  • [1] Anderson J.A., 1988, NEUROCOMPUTING
  • [2] [Anonymous], 1987, LEARNING INTERNAL RE
  • [3] [Anonymous], 2016, LINEAR NONLINEAR PRO
  • [4] BARNARD E, 1989, CSE89014 OR GRAD CTR
  • [5] NEURAL NETWORK APPROACHES VERSUS STATISTICAL-METHODS IN CLASSIFICATION OF MULTISOURCE REMOTE-SENSING DATA
    BENEDIKTSSON, JA
    SWAIN, PH
    ERSOY, OK
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1990, 28 (04): : 540 - 552
  • [6] BENEDIKTSSON JA, 1990, TREE9064 PURD U LAB
  • [7] BENEDIKTSSON JA, 1990, P IGARSS 90, V2, P1269
  • [8] BENEDIKTSSON JA, 1992, IEEE T SYST MAN CYB, V22, P540
  • [9] DECATUR SE, 1989, THESIS MIT MASSACHUS
  • [10] DECATUR SE, 1989, P INT JOINT C NEUR N, V1, P283