SYMMETRY TRANSFORMATIONS FROM LOCAL CURRENTS

被引:4
作者
MAISON, HD
机构
[1] Max-Planck-Institut für Physik und Astrophysik, München
关键词
D O I
10.1007/BF01645455
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For internal symmetries it is shown that it is possible to construct automorphisms for a Haag-Araki local ring system {ℛ(O)} from a local current affiliated to it. Although the charges"Qv for finite volume V do not converge for V→∞ we prove the convergence of the corresponding automorphisms of {ℛ(O)}. For external symmetries which map bounded space-time regions into unbounded ones (e.g. translations) we have to require some additional continuity condition on the isomorphisms corresponding to Qv to get convergence. © 1969 Springer-Verlag."
引用
收藏
页码:56 / +
页数:1
相关论文
共 10 条
[1]  
BORCHERS HJ, 1965, COMMUN MATH PHYS, V1, P57
[2]   ALGEBRAIC APPROACH TO QUANTUM FIELD THEORY [J].
HAAG, R ;
KASTLER, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (07) :848-&
[3]  
HILLE E, 1957, AMER MATH SOC COLL P, V31
[4]  
KASTLER D, 1967 P ROCH C PART F
[5]  
Kato T., 1966, PERTURBATION THEORY, V132, P396
[6]  
MOORE RT, 1968, MEM AM MATH SOC, V78, P55
[7]   SYMMETRY OPERATIONS AND SPONTANEOUSLY BROKEN SYMMETRIES IN RELATIVISTIC QUANTUM FIELD THEORIES [J].
REEH, H .
FORTSCHRITTE DER PHYSIK, 1968, 16 (11-1) :687-&
[8]  
Robinson D.W., 1966, COMMUN MATH PHYS, V3, P1, DOI [10.1007/bf01645459, DOI 10.1007/BF01645459]
[9]  
STREATER RF, 1966, P C MATHEMATICAL THE
[10]  
YOSIDA K, 1965, FUNCTIONAL ANALYSIS