SPECTRAL STRUCTURE OF MONIC MATRIX POLYNOMIALS AND THE EXTENSION PROBLEM

被引:7
作者
GOHBERG, I
RODMAN, L
机构
[1] WEIZMANN INST SCI,DEPT PURE MATH,REHOVOT 76100,ISRAEL
[2] TEL AVIV UNIV,DEPT STAT,TEL AVIV,ISRAEL
关键词
D O I
10.1016/0024-3795(79)90156-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following problem: find a monic matrix polynomial, given its companion matrix on a fixed invariant subspace, and given also the Jordan structure of this matrix on some complimentary invariant subspace. A detailed investigation is presented for the case when the additional Jordan matrix has only one point of spectrum. © 1979.
引用
收藏
页码:157 / 172
页数:16
相关论文
共 5 条
[1]  
Gale D., 1957, PACIFIC J MATH, V7, P1073, DOI [10.2140/pjm.1957.7.1073, DOI 10.2140/PJM.1957.7.1073]
[2]   SPECTRAL ANALYSIS OF MATRIX POLYNOMIALS .1. CANONICAL FORMS AND DIVISORS [J].
GOHBERG, I ;
LANCASTER, P ;
RODMAN, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1978, 20 (01) :1-44
[3]  
GOHBERG I, TOPICS FUNCTIONAL AN
[4]  
GOHBERG I, UNPUBLISHED
[5]   FUNDAMENTAL THEOREM ON LAMBDA-MATRICES WITH APPLICATIONS .1. ORDINARY DIFFERENTIAL-EQUATIONS WITH CONSTANT COEFFICIENTS [J].
LANCASTER, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1977, 18 (03) :189-211