CLASS OF PROBABILISTIC CONJOINT MEASUREMENT MODELS - SOME DIAGNOSTIC PROPERTIES

被引:20
作者
FALMAGNE, JC
机构
[1] New York University, New York
基金
美国国家科学基金会;
关键词
D O I
10.1016/0022-2496(79)90013-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Pax,by be the probability of picking the two-dimensional object ax in the set {ax, by}. This paper investigates necessary and/or sufficient conditions for a number of representations for these probabilities: (f, g, F, K, k, G, u, and v are functions) 1. 1. Pax,by ≤ 1 2 iff f(a) + g(x) ≤ f(b) + g(y), 2. 2. Pax,by = F[f(a) + g(x), f(b) + g(y)], 3. 3. Pax,by = K{k[f(a) + g(x)] - k[f(b) + g(y)]}, 4. 4. Pax,by = K[u(a) v(x) - u(b) v(y)], 5. 5. Pax,by = G[(f(a) + g(x)) (f(b) + g(y))]. The results concerning 1, 2, and 3 are essentially trivial consequences of known facts. The results concerning 4 and 5 are new, and amount to representation theorems for these equations. The cases in which k is a convex or concave function in 3 (of which 4 and 5 are special cases) are also analyzed. © 1979.
引用
收藏
页码:73 / 88
页数:16
相关论文
共 17 条
[1]  
ACZEL J, 1966, LECTURES FUNCTIONAL
[2]  
Block H. D, 1960, CONTRIBUTIONS PROBAB
[3]  
Brunk HD., 1972, STAT-US
[4]  
CHOCQUET G, 1966, TOPOLOGY
[5]   STOCHASTIC CHOICE AND CARDINAL UTILITY [J].
DEBREU, G .
ECONOMETRICA, 1958, 26 (03) :440-444
[6]  
DOIGNON JP, 1974, J MATH PSYCHOL, V11, P473, DOI 10.1016/0022-2496(74)90033-9
[7]   RANDOM CONJOINT MEASUREMENT AND LOUDNESS SUMMATION [J].
FALMAGNE, JC .
PSYCHOLOGICAL REVIEW, 1976, 83 (01) :65-79
[8]  
FALMAGNE JC, PSYCHOLOGICAL REV
[9]  
KRANTZ DH, 1971, F MEASUREMENT, V1
[10]  
KRISTOF W, 1967, ETSEBG722 ED TEST SE