POSTERIOR RANGES OF FUNCTIONS OF PARAMETERS UNDER PRIORS WITH SPECIFIED QUANTILES

被引:9
作者
RUGGERI, F
机构
[1] Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni della Matematica e dell’Informatica, Via A.M Ampere 56 1-20131, Milano
关键词
Bayesian robustness; functions of parameters; posterior ranges of; prior quantiles;
D O I
10.1080/03610929008830192
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Suppose some quantiles of the prior distribution of a nonnegative parameter 0 are specified. Instead of eliciting just one prior density function, consider the class Γ of all the density functions compatible with the quantile specification. Given a likelihood function, find the posterior upper and lower bounds for the expected value of any real-valued function h(θ), as the density varies in Γ Such a scheme agrees with a robust Bayesian viewpoint. © 1990, Taylor & Francis Group, LLC. All rights reserved.
引用
收藏
页码:127 / 144
页数:18
相关论文
共 10 条
[1]   ROBUST BAYES AND EMPIRICAL BAYES ANALYSIS WITH EPSILON-CONTAMINATED PRIORS [J].
BERGER, J ;
BERLINER, LM .
ANNALS OF STATISTICS, 1986, 14 (02) :461-486
[2]  
BERGER J, 1988, BAYESIAN STATISTICS, V3, P45
[3]  
BERGER J, 1987, 8710 PURD U DEP STAT
[4]  
Berger J.O., 1984, ROBUSTNESS BAYESIAN, P63
[5]  
Berger J.O., 1985, STAT DECISION THEORY, P74
[6]   BAYESIAN-INFERENCE USING INTERVALS OF MEASURES [J].
DEROBERTIS, L ;
HARTIGAN, JA .
ANNALS OF STATISTICS, 1981, 9 (02) :235-244
[7]  
Martz H.F., 1982, BAYESIAN RELIABILITY
[8]   RANGES OF POSTERIOR PROBABILITIES FOR QUASIUNIMODAL PRIORS WITH SPECIFIED QUANTILES [J].
OHAGAN, A ;
BERGER, JO .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (402) :503-508
[9]   RANGE OF POSTERIOR MEASURES FOR PRIORS WITH ARBITRARY CONTAMINATIONS [J].
SIVAGANESAN, S .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1988, 17 (05) :1591-1612
[10]   RANGES OF POSTERIOR MEASURES FOR PRIORS WITH UNIMODAL CONTAMINATIONS [J].
SIVAGANESAN, S ;
BERGER, JO .
ANNALS OF STATISTICS, 1989, 17 (02) :868-889