THE INTERSECTION LOCAL TIME OF THE WESTWATER PROCESS

被引:5
作者
ZHOU, XY
机构
[1] Department of Mathematics, Beijing Normal University, Beijing
关键词
D O I
10.1007/BF01192063
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, self-intersection properties of the Westwater process are investigated. As a result, we obtain that the Westwater process has an intersection local time alphaBAR(x, [0, s] x [t, 1]) which is Holder continuous with respect to (x, s, t) is-an-element-of R3 x [0, 1/2] x [1/2, 1], and the Hausdorff dimension of the double time set is 1/2, as for Brownian motion in R3.
引用
收藏
页码:375 / 397
页数:23
相关论文
共 16 条
[1]   UNIFORM DIMENSION OF LEVEL SETS OF A BROWNIAN SHEET [J].
ADLER, RJ .
ANNALS OF PROBABILITY, 1978, 6 (03) :509-515
[2]  
ADLER RJ, 1981, PROB MATH STAT
[3]  
DVORETZKY A., 1950, ACTA SCI MATH SZEGED, V12, P75
[4]   AN EXTENSION OF A THEOREM OF TAYLOR,SJ CONCERNING MULTIPLE POINTS OF SYMMETRIC STABLE PROCESS [J].
FRISTEDT, B .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1967, 9 (01) :62-&
[5]   OCCUPATION DENSITIES [J].
GEMAN, D ;
HOROWITZ, J .
ANNALS OF PROBABILITY, 1980, 8 (01) :1-67
[6]   A LOCAL TIME ANALYSIS OF INTERSECTIONS OF BROWNIAN PATHS IN THE PLANE [J].
GEMAN, D ;
HOROWITZ, J ;
ROSEN, J .
ANNALS OF PROBABILITY, 1984, 12 (01) :86-107
[7]  
KUSUOKA S, 1983, RES NOTES MATH, P48
[8]  
LEGALL JF, 1986, SEM STOCH PROC, P107
[9]  
LEGALL JF, 1983, LECT NOTES MATH, V1203, P314
[10]  
NELSON E, 1983, STUDIES APPL MATH AD, V8, P1