THE RELATIONSHIP BETWEEN AR-MODELING BISPECTRAL ESTIMATION AND THE THEORY OF LINEAR PREDICTION

被引:7
作者
GALLEGO, A
CARRION, MC
RUIZ, DP
MEDOURI, A
机构
[1] Department of Applied Physics, Faculty of Sciences, University of Granada
关键词
BISPECTRUM; AUTOREGRESSIVE MODELING; LINEAR PREDICTION;
D O I
10.1016/0165-1684(94)90006-X
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a relationship between bispectrum estimation by means of autoregressive modelling and the theory of linear prediction is presented. It is demonstrated that the 'third-order recursion' equations for a causal and an anticausal model can be derived via minimization of a set of forward- and backward-prediction squared errors, respectively.
引用
收藏
页码:381 / 388
页数:8
相关论文
共 12 条
[1]  
Brillinger, An introduction to polyspectra, The Annals of Mathematical Statistics, 36, pp. 1351-1374, (1965)
[2]  
Brillinger, Rosenblatt, Asymptotical theory of estimates of k-th order spectra, Spectral Analysis of Time Series, pp. 153-188, (1967)
[3]  
Gallego, Carrion, Ruiz, Medouri, Prewindowed and postwindowed methods for bispectrum estimation via AR modelling, IEE Electron. Lett., 29, 2, pp. 181-182, (1993)
[4]  
Kay, Marple, Spectrum analysis—A modern perspective, Proc. IEEE, 69, pp. 1380-1419, (1981)
[5]  
Makhoul, Linear prediction: A tutorial review, Proc. IEEE, 63, pp. 561-580, (1975)
[6]  
Marple, Digital Spectral Analysis with Applications, pp. 206-284, (1987)
[7]  
Mendel, Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications, Proc. IEEE, 79, pp. 278-305, (1991)
[8]  
Nikias, Raghuveer, Bispectrum estimation: A digital signal processing framework, Proc. IEEE, 75, pp. 869-891, (1987)
[9]  
Raghuveer, Nikias, A parametric approach to bispectrum estimation, Proc. Internat. Conf. Acoust. Speech Signal Process. '84, pp. 38.1.1-38.1.4, (1984)
[10]  
Raghuveer, Nikias, Bispectrum estimation for short length data, Proc. Internat. Conf. Acoust. Speech Signal Process. '85, pp. 1352-1355, (1985)