MINIMAL GEODESICS

被引:54
作者
BANGERT, V [1 ]
机构
[1] UNIV BERN,INST MATH,CH-3012 BERN,SWITZERLAND
关键词
D O I
10.1017/S014338570000554X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the close relation between Aubry-Mather theory and minimal geodesies on a 2-torus we study the existence and properties of minimal geodesics in compact Riemannian manifolds of dimension 3. We prove that there exist minimal geodesics with certain rotation vectors and that there are restrictions on the rotation vectors of arbitrary minimal geodesics. A detailed analysis of the minimal geodesics of the “Hedlund examples“shows that - to a certain extent - our results are optimal. © 1990, Cambridge University Press. All rights reserved.
引用
收藏
页码:263 / 286
页数:24
相关论文
共 20 条
[1]   THE DISCRETE FRENKEL-KONTOROVA MODEL AND ITS EXTENSIONS .1. EXACT RESULTS FOR THE GROUND-STATES [J].
AUBRY, S ;
LEDAERON, PY .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 8 (03) :381-422
[2]  
Bangert V., 1988, DYNAMICS REPORTED, V1, P1
[3]   BIRKHOFF PERIODIC-ORBITS FOR SMALL PERTURBATIONS OF COMPLETELY INTEGRABLE HAMILTONIAN-SYSTEMS WITH CONVEX HAMILTONIANS [J].
BERNSTEIN, D ;
KATOK, A .
INVENTIONES MATHEMATICAE, 1987, 88 (02) :225-241
[4]  
BYALYI ML, 1986, FUNCT ANAL APPL+, V20, P260
[5]   MATHER SETS FOR PLANE HAMILTONIAN-SYSTEMS [J].
DENZLER, J .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1987, 38 (06) :791-812
[6]   REAL FLAT CHAINS, COCHAINS AND VARIATIONAL PROBLEMS [J].
FEDERER, H .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 24 (04) :351-407
[7]  
GROMOV M, 1983, J DIFFER GEOM, V18, P1
[8]  
Gromov M, 1981, TEXTES MATH, V1
[9]   Geodesics on a two-dimensional Riemannian manifold with periodic coefficients. [J].
Hedlund, GA .
ANNALS OF MATHEMATICS, 1932, 33 :719-739
[10]  
HERMAN MR, 1988, EXISTENCE NONEXISTEN