NONINTEGRABLE SYSTEMS WITH ALGEBRAIC SINGULARITIES IN COMPLEX TIME

被引:10
作者
BOUNTIS, T [1 ]
DROSSOS, L [1 ]
PERCIVAL, IC [1 ]
机构
[1] UNIV LONDON,QUEEN MARY & WESTFIELD COLL,SCH MATH SCI,LONDON E1 4NS,ENGLAND
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1991年 / 24卷 / 14期
关键词
HAMILTONIAN-SYSTEMS; KOWALEVSKI EXPONENTS; DYNAMICAL-SYSTEMS; 1ST INTEGRALS; NON-EXISTENCE; CRITERION;
D O I
10.1088/0305-4470/24/14/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Dynamical arguments are presented which suggest that there are non-integrable systems without clustering of singularities, without infinite singularities, or singularities with an infinite number of branches in the complex t-plane. Several examples with only algebraic singularities are studied, for which strong numerical evidence is presented for non-integrability and infinitely sheeted solutions. 'Weak-Painleve' potentials are also analysed from this point of view, and all integrable cases are found to possess only finitely sheeted solutions.
引用
收藏
页码:3217 / 3236
页数:20
相关论文
共 26 条
[1]  
ADLER M, 1988, ALGEBRAICALLY COMPLE
[2]   ON THE SINGULARITY ANALYSIS OF INTERSECTING SEPARATRICES IN NEAR-INTEGRABLE DYNAMIC-SYSTEMS [J].
BOUNTIS, T ;
PAPAGEORGIOU, V ;
BIER, M .
PHYSICA D, 1987, 24 (1-3) :292-304
[3]  
BOUNTIS T, 1988, AIP C P, V88, P279
[4]  
BOUNTIS T, 1990, NONINTEGRABLE SYSTEM
[5]   ANALYTIC STRUCTURE OF THE HENON-HEILES HAMILTONIAN IN INTEGRABLE AND NON-INTEGRABLE REGIMES [J].
CHANG, YF ;
TABOR, M ;
WEISS, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (04) :531-538
[6]  
CHANG YF, 1980, J I MATH APPL, V25, P349
[7]  
CHANG YF, 1982, PHYSICA D, V8, P380
[8]   CHAOTIC STREAMLINES IN THE ABC FLOWS [J].
DOMBRE, T ;
FRISCH, U ;
GREENE, JM ;
HENON, M ;
MEHR, A ;
SOWARD, AM .
JOURNAL OF FLUID MECHANICS, 1986, 167 :353-391
[9]   A NEW CLASS OF INTEGRABLE SYSTEMS [J].
DORIZZI, B ;
GRAMMATICOS, B ;
RAMANI, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (09) :2282-2288
[10]  
DORIZZI B, 1983, THESIS ORSAY