ON THE GLOBAL EXISTENCE OF BOHMIAN MECHANICS

被引:60
作者
BERNDL, K
DURR, D
GOLDSTEIN, S
PERUZZI, G
ZANGHI, N
机构
[1] RUTGERS STATE UNIV, DEPT MATH, NEW BRUNSWICK, NJ 08903 USA
[2] IST NAZL FIS NUCL, SEZ FIRENZE, I-50125 FLORENCE, ITALY
[3] UNIV GENOA, IST NAZL FIS NUCL, SEZ GENOVA, DIPARTIMENTO FIS, I-16146 GENOA, ITALY
基金
美国国家科学基金会;
关键词
D O I
10.1007/BF02101660
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the particle motion in Bohmian mechanics, given by the solution of an ordinary differential equation, exists globally: For a large class of potentials the singularities of the velocity field and infinity will not be reached in finite time for typical initial values. A substantial part of the analysis is based on the probabilistic significance of the quantum flux. We elucidate the connection between the conditions necessary for global existence and the self-adjointness of the Schrodinger Hamiltonian.
引用
收藏
页码:647 / 673
页数:27
相关论文
共 38 条
[1]  
Albeverio S., 1988, SOLVABLE MODELS QUAN
[2]  
Arnol'd V. I., 1963, USPEKHI MAT NAUK, V18, P91, DOI DOI 10.1070/RM1963V018N06ABEH001143
[3]  
Arnold, 2013, MATH METHODS CLASSIC
[4]  
Bell J. S, 1987, SPEAKABLE UNSPEAKABL
[5]  
BERAHA L, 1994, THESIS U MUNCHEN
[6]   On compact solutions of operational-differential equations. I [J].
Bochner, S ;
von Neumann, J .
ANNALS OF MATHEMATICS, 1935, 36 :255-291
[7]  
BOHM D, 1952, PHYS REV, V85, P166, DOI 10.1103/PhysRev.85.166
[8]   A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF HIDDEN VARIABLES .2. [J].
BOHM, D .
PHYSICAL REVIEW, 1952, 85 (02) :180-193
[9]  
Bohm D., 1993, UNDIVIDED UNIVERSE O
[10]   CONSERVATIVE DIFFUSIONS [J].
CARLEN, EA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (03) :293-315