THE NEAR-BEST SOLUTION OF A POLYNOMIAL MINIMIZATION PROBLEM BY THE CARATHEODORY-FEJER METHOD

被引:6
作者
EIERMANN, M [1 ]
STARKE, G [1 ]
机构
[1] UNIV KARLSRUHE,INST PRAKT MATH,W-7500 KARLSRUHE 1,GERMANY
关键词
Faber-Carathéodory-Fejér approximation method; Nevanlinna-Pick interpolation; Polynomial Chebyshev approximation problems with interpolatory constraints;
D O I
10.1007/BF01890413
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a compact set Ω{square image of or equal to}C, 1∉Ω, we consider the Chebyshev problem {Mathematical expression}, where n is a fixed nonnegative integer and IIm denotes the space of all complex polynomials of degree m. This problem is of importance for the construction of semi-iterative methods for singular systems of linear algebraic equations. In the case when Ω is a Jordan region whose boundary is sufficiently smooth, we determine the asymptotic behavior of {norm of matrix}pm*{norm of matrix}Ω, where Pm*, denotes the solution of the above Chebyshev problem. Moreover, using the Carathéodory-Fejér method, we construct a "near minimal" solution {Mathematical expression} of this problem if CΩ is simply connected. © 1990 Springer-Verlag New York Inc.
引用
收藏
页码:303 / 319
页数:17
相关论文
共 22 条
[1]  
Adamjan V. M., 1971, MATH USSR SB, V15, P31
[2]  
Bernstein S., 1926, LECONS PROPRIETES EX
[3]  
Caratheodory C., 1911, REND CIRC MATH PALER, V32, P218
[4]  
Duren P., 1970, THEORY HPSPACES
[5]   ON THE SOLUTION OF SINGULAR LINEAR-SYSTEMS OF ALGEBRAIC EQUATIONS BY SEMIITERATIVE METHODS [J].
EIERMANN, M ;
MAREK, I ;
NIETHAMMER, W .
NUMERISCHE MATHEMATIK, 1988, 53 (03) :265-283
[6]   THE POLYNOMIAL CARATHEODORY-FEJER APPROXIMATION METHOD FOR JORDAN REGIONS [J].
ELLACOTT, SW ;
GUTKNECHT, MH .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1983, 3 (02) :207-220
[7]   COMPUTATION OF FABER SERIES WITH APPLICATION TO NUMERICAL POLYNOMIAL-APPROXIMATION IN THE COMPLEX-PLANE [J].
ELLACOTT, SW .
MATHEMATICS OF COMPUTATION, 1983, 40 (162) :575-587
[8]   Polynomic expansion. [J].
Faber, G .
MATHEMATISCHE ANNALEN, 1903, 57 :389-408
[9]  
GAIER D, 1980, VORLESUNGEN APPROXIM
[10]  
GUTKNECHT MH, 1986, APPROXIMATION THEORY, V5, P371