SIMPLE CONTINUOUS PRESSURE ELEMENTS FOR TWO-DIMENSIONAL AND 3-DIMENSIONAL INCOMPRESSIBLE FLOWS

被引:22
作者
SOULAIMANI, A
FORTIN, M
OUELLET, Y
DHATT, G
BERTRAND, F
机构
[1] Univ Laval, Quebec, Que, Can, Univ Laval, Quebec, Que, Can
关键词
D O I
10.1016/0045-7825(87)90089-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页码:47 / 69
页数:23
相关论文
共 21 条
[1]  
Arnold D. N., 1984, CALCOLO, V21, P337, DOI [DOI 10.1007/BF02576171, 10.1007/bf02576171]
[2]   ERROR-BOUNDS FOR FINITE ELEMENT METHOD [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :322-&
[3]   ERROR ESTIMATES FOR FINITE-ELEMENT METHOD SOLUTION OF THE STOKES PROBLEM IN THE PRIMITIVE VARIABLES [J].
BERCOVIER, M ;
PIRONNEAU, O .
NUMERISCHE MATHEMATIK, 1979, 33 (02) :211-224
[4]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[5]  
Brezzi F., 1984, EFFICIENT SOLUTIONS, P11
[6]  
CROUZEIX M, 1973, REV FR AUTOMAT INFOR, V7, P33
[7]   A STUDY OF PENALTY ELEMENTS FOR INCOMPRESSIBLE LAMINAR FLOWS [J].
DHATT, G ;
HUBERT, G .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1986, 6 (01) :1-19
[8]   EXPERIMENTS WITH SEVERAL ELEMENTS FOR VISCOUS INCOMPRESSIBLE FLOWS [J].
FORTIN, M ;
FORTIN, A .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1985, 5 (10) :911-928
[9]   A GENERALIZATION OF UZAWA ALGORITHM FOR THE SOLUTION OF THE NAVIER-STOKES EQUATIONS [J].
FORTIN, M ;
FORTIN, A .
COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1985, 1 (05) :205-208
[10]   A MODIFIED FINITE-ELEMENT METHOD FOR SOLVING THE TIME-DEPENDENT, INCOMPRESSIBLE NAVIER-STOKES EQUATIONS .1. THEORY [J].
GRESHO, PM ;
CHAN, ST ;
LEE, RL ;
UPSON, CD .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1984, 4 (06) :557-598