Metric properties of minimal solutions of discrete periodical variational problems

被引:37
作者
Blank, M. L. [1 ]
机构
[1] Moscow State Univ, Moscow, Russia
关键词
D O I
10.1088/0951-7715/2/1/001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate properties of minimal solutions of multidimensional discrete periodical variational problems. A one-dimensional example of such a problem is the Frenkel-Kontorova model. We pick out a family of self-conformed solutions, properties of which are exactly the same as in the one-dimensional case. We investigate also non-self-conformed solutions. For translationally invariant Lagrangians we prove that only self-conformed solutions are physically practicable.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 21 条
[1]   THE TWIST MAP, THE EXTENDED FRENKEL-KONTOROVA MODEL AND THE DEVILS STAIRCASE [J].
AUBRY, S .
PHYSICA D, 1983, 7 (1-3) :240-258
[2]   THE DISCRETE FRENKEL-KONTOROVA MODEL AND ITS EXTENSIONS .1. EXACT RESULTS FOR THE GROUND-STATES [J].
AUBRY, S ;
LEDAERON, PY .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 8 (03) :381-422
[3]   BIRKHOFF PERIODIC-ORBITS FOR SMALL PERTURBATIONS OF COMPLETELY INTEGRABLE HAMILTONIAN-SYSTEMS WITH CONVEX HAMILTONIANS [J].
BERNSTEIN, D ;
KATOK, A .
INVENTIONES MATHEMATICAE, 1987, 88 (02) :225-241
[4]  
BUNIMOVICH LA, 1985, SOV PROBL MAT FUND N, V2, P113
[5]   ONE-DIMENSIONAL MODEL OF THE QUASI-CRYSTALLINE ALLOY [J].
BURKOV, SE .
JOURNAL OF STATISTICAL PHYSICS, 1987, 47 (3-4) :409-438
[6]  
Byalyi M. L., 1986, FUNKTSIONAL ANAL PRI, V20, P9
[7]  
Katok A., 1982, ERGOD TH DYNAM SYS, V11, P185, DOI 10.1017/S0143385700001504
[8]  
LADYGENSKAIY OA, 1967, LINEAR QUASILINEAR E, P450
[9]  
LANDYS EM, 1971, EQUATIONS 2 ORDER EL, P287
[10]   PERCIVAL VARIATIONAL PRINCIPLE FOR INVARIANT-MEASURES AND COMMENSURATE-INCOMMENSURATE PHASE-TRANSITIONS IN ONE-DIMENSIONAL CHAINS [J].
LAZUTKIN, VF ;
TERMAN, DY .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (04) :511-522