EFFICIENT COMPUTATION OF ZERO-DIMENSIONAL GROBNER BASES BY CHANGE OF ORDERING

被引:341
作者
FAUGERE, JC
GIANNI, P
LAZARD, D
MORA, T
机构
[1] UNIV PISA,DIPARTIMENTO MATEMAT,I-56127 PISA,ITALY
[2] UNIV GENOA,DIPARTIMENTO MATEMAT,I-16132 GENOA,ITALY
关键词
D O I
10.1006/jsco.1993.1051
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present an efficient algorithm for the transformation of a Gröbner basis of a zero-dimensional ideal with respect to any given ordering into a Gröbner basis with respect to any other ordering. This algorithm is polynomial in the degree of the ideal. In particular the lexicographical Gröbner basis can be obtained by applying this algorithm after a total degree Gröbner basis computation: it is usually much faster to compute the basis this way than with a direct application of Buchberger’s algorithm. © 1993 Academic Press Limited.
引用
收藏
页码:329 / 344
页数:16
相关论文
共 19 条
[1]  
[Anonymous], 1988, INT S NUM M
[2]  
BAREISS EH, 1968, MATH COMPUT, V22, P565
[3]  
Becker T., 1993, GROBNER BASES
[4]  
Buchberger B., 1970, AEQUATIONES MATH, V4, P374
[5]  
BUCHBERGER B, 1985, RECENT TRENDS MULTID
[6]  
BUCHBERGER B, 1965, THESIS INNSBRUCK
[7]  
Buchberger B., 1979, LECT NOTES COMPUT SC, V72, P3
[8]   EQUATIONS FOR THE PROJECTIVE CLOSURE AND EFFECTIVE NULLSTELLENSATZ [J].
CANIGLIA, L ;
GALLIGO, A ;
HEINTZ, J .
DISCRETE APPLIED MATHEMATICS, 1991, 33 (1-3) :11-23
[9]  
CANIGLIA L, 1988, SPRINGER LECT NOTES, V357, P131
[10]  
DAVENPORT JH, 1988, CALCUL FORMEL SYSTEM