A MATROID ALGORITHM AND ITS APPLICATION TO THE EFFICIENT SOLUTION OF 2 OPTIMIZATION PROBLEMS ON GRAPHS

被引:16
作者
BREZOVEC, C
CORNUEJOLS, G
GLOVER, F
机构
[1] CARNEGIE MELLON UNIV,GRAD SCH IND ADM,PITTSBURGH,PA 15213
[2] UNIV COLORADO,GRAD SCH BUSINESS ADM,BOULDER,CO 80309
关键词
D O I
10.1007/BF01589417
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
引用
收藏
页码:471 / 487
页数:17
相关论文
共 13 条
[1]   2 ALGORITHMS FOR WEIGHTED MATROID INTERSECTION [J].
BREZOVEC, C ;
CORNUEJOLS, G ;
GLOVER, F .
MATHEMATICAL PROGRAMMING, 1986, 36 (01) :39-53
[2]  
EDMONDS J, 1979, ANN DISCRETE MATH, V4, P39
[3]  
Edmonds J., 1970, COMBINATORIAL STRUCT, P69
[4]  
Fredman M. L., 1984, 25th Annual Symposium on Foundations of Computer Science (Cat. No. 84CH2085-9), P338, DOI 10.1109/SFCS.1984.715934
[5]   A LINEAR-TIME ALGORITHM FOR A SPECIAL CASE OF DISJOINT SET UNION [J].
GABOW, HN ;
TARJAN, RE .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1985, 30 (02) :209-221
[6]   EFFICIENT ALGORITHMS FOR FINDING MINIMUM SPANNING-TREES IN UNDIRECTED AND DIRECTED-GRAPHS [J].
GABOW, HN ;
GALIL, Z ;
SPENCER, T ;
TARJAN, RE .
COMBINATORICA, 1986, 6 (02) :109-122
[7]   EFFICIENT ALGORITHMS FOR A FAMILY OF MATROID INTERSECTION PROBLEMS [J].
GABOW, HN ;
TARJAN, RE .
JOURNAL OF ALGORITHMS, 1984, 5 (01) :80-131
[8]   TRAVELING-SALESMAN PROBLEM AND MINIMUM SPANNING TREES [J].
HELD, M ;
KARP, RM .
OPERATIONS RESEARCH, 1970, 18 (06) :1138-&
[9]  
Held M, 1971, MATHEMATICAL PROGRAM, V1, P6, DOI [DOI 10.1007/BF01584070, 10.1007/BF01584070]
[10]  
Lawler E.L., 1976, COMBINATORIAL OPTIMI