COMPLETE CUBIC SPLINE ESTIMATION OF NONPARAMETRIC REGRESSION-FUNCTIONS

被引:2
作者
FABIAN, V
机构
[1] Department of Statistics and Probability, Michigan State University, East Lansing, 48824-1027, MI
关键词
D O I
10.1007/BF01377628
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For regression functions on [0, 1] with bounded fourth derivatives, a complete cubic spline estimate is proposed and shown to have an asymptotically optimal error rate among all estimates. The error is measured by the supremum norm. © 1990 Springer-Verlag.
引用
收藏
页码:57 / 64
页数:8
相关论文
共 15 条
[1]  
Boor CD., 1978, PRACTICAL GUIDE SPLI
[2]   LOWER RATE OF CONVERGENCE FOR LOCATING A MAXIMUM OF A FUNCTION [J].
CHEN, H .
ANNALS OF STATISTICS, 1988, 16 (03) :1330-1334
[3]   ON ASYMPTOTIC NORMALITY IN STOCHASTIC APPROXIMATION [J].
FABIAN, V .
ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (04) :1327-&
[4]   POLYNOMIAL ESTIMATION OF REGRESSION-FUNCTIONS WITH THE SUPREMUM NORM ERROR [J].
FABIAN, V .
ANNALS OF STATISTICS, 1988, 16 (04) :1345-1368
[5]  
Fabian V., 1985, INTRO PROBABILITY MA
[6]  
Forsythe GE., 1977, COMPUTER METHODS MAT
[7]  
HALASZ G, 1978, FOURIER ANAL APPROXI, V1, P403
[8]   OPTIMAL ERROR BOUNDS FOR CUBIC SPLINE INTERPOLATION [J].
HALL, CA ;
MEYER, WW .
JOURNAL OF APPROXIMATION THEORY, 1976, 16 (02) :105-122
[9]  
Hall CA., 1968, J APPROX THEORY, V1, P209, DOI [10.1016/0021-9045(68)90025-7, DOI 10.1016/0021-9045(68)90025-7]
[10]  
Ibragimov I. A., 1984, J SOC MATH, V24, P540