MULTIDIMENSIONAL-SCALING ON A SPHERE

被引:44
作者
COX, TF
COX, MAA
机构
[1] UNIV NEWCASTLE UPON TYNE,DEPT MATH & STAT,NEWCASTLE TYNE NE1 7RU,TYNE & WEAR,ENGLAND
[2] UNIV NEWCASTLE UPON TYNE,DEPT ENGN MATH,NEWCASTLE TYNE NE1 7RU,TYNE & WEAR,ENGLAND
关键词
DISSIMILARITY; MULTIDIMENSIONAL SCALING; SPHERICAL DATA;
D O I
10.1080/03610929108830679
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Nonmetric multidimensional scaling (MDS) is adapted to give configurations of points that lie on the surface of a sphere. There are data sets where it can be argued that spherical MDS is more relevant than the usual planar MDS. The theory behind the adaption of planar MDS to spherical MDS is outlined and then its use is illustrated on three data sets.
引用
收藏
页码:2943 / 2953
页数:11
相关论文
共 12 条
[1]   RESTRICTED MULTIDIMENSIONAL-SCALING MODELS [J].
BENTLER, PM ;
WEEKS, DG .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 1978, 17 (02) :138-151
[2]   CONSTRAINED MULTIDIMENSIONAL-SCALING IN N-SPACES [J].
BLOXOM, B .
PSYCHOMETRIKA, 1978, 43 (03) :397-408
[3]   A MODEL AND ALGORITHM FOR MULTIDIMENSIONAL-SCALING WITH EXTERNAL CONSTRAINTS ON THE DISTANCES [J].
BORG, I ;
LINGOES, JC .
PSYCHOMETRIKA, 1980, 45 (01) :25-38
[4]  
CHATFIELD C, 1980, INTRO MULTIVARIATE A
[5]  
Fillenbaum Samuel, 1971, STRUCTURES SUBJECTIV
[6]  
Gordon A. D., 1981, CLASSIFICATION
[7]   MULTIDIMENSIONAL-SCALING BY OPTIMIZING GOODNESS OF FIT TO A NONMETRIC HYPOTHESIS [J].
KRUSKAL, JB .
PSYCHOMETRIKA, 1964, 29 (01) :1-27
[8]   NONMETRIC MULTIDIMENSIONAL-SCALING - A NUMERICAL-METHOD [J].
KRUSKAL, JB .
PSYCHOMETRIKA, 1964, 29 (02) :115-129
[9]   FUNCTIONAL RELATIONS IN MULTIDIMENSIONAL-SCALING [J].
LEE, SY ;
BENTLER, PM .
BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1980, 33 (NOV) :142-150