LOCAL UNIQUENESS IN THE INVERSE CONDUCTIVITY PROBLEM WITH ONE MEASUREMENT

被引:47
作者
ALESSANDRINI, G
ISAKOV, V
POWELL, J
机构
[1] WICHITA STATE UNIV,DEPT MATH & STAT,WICHITA,KS 67260
[2] IOWA STATE UNIV SCI & TECHNOL,AMES LAB,AMES,IA 50011
关键词
D O I
10.2307/2154768
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove local uniqueness of a domain D entering the conductivity equation div((1 + chi(D))del u) = 0 in a bounded planar domain Omega given the Cauchy data for u on a part of partial derivative Omega. The main assumption is that del u has zero index on partial derivative Omega which is easy to guarantee by choosing special boundary data for u. To achieve our goals we study index of critical points of u on partial derivative Omega.
引用
收藏
页码:3031 / 3041
页数:11
相关论文
共 13 条
[1]   STABILITY FOR AN INVERSE PROBLEM IN POTENTIAL-THEORY [J].
BELLOUT, H ;
FRIEDMAN, A ;
ISAKOV, V .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 332 (01) :271-296
[3]  
CHEREDNICHENKO VG, 1982, DIFF EQUAT+, V18, P503
[4]  
CHEREDNICHENKO VG, 1992, ILL-POSED PROBLEMS IN NATURAL SCIENCES, P270
[5]   THE FREE-BOUNDARY OF A FLOW IN A POROUS BODY HEATED FROM ITS BOUNDARY [J].
DIBENEDETTO, E ;
ELLIOTT, CM ;
FRIEDMAN, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (09) :879-900
[6]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, VII
[7]   ON THE UNIQUENESS IN THE INVERSE CONDUCTIVITY PROBLEM WITH ONE MEASUREMENT [J].
FRIEDMAN, A ;
ISAKOV, V .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1989, 38 (03) :563-579
[8]  
ISAKOV V., 1990, MATH SURVEYS MONOGRA, V34
[9]  
ISAKOV V, 1990, INVERSE PROBL, V6, P31
[10]  
Mikhailov L. G., 1970, NEW CLASS SINGULAR I