SUPERCONVERGENCE FOR RECTANGULAR MIXED FINITE-ELEMENTS

被引:64
作者
DURAN, R
机构
[1] Departamento de Matemática, Universidad Nacional de La Plata, La Plata, 1900
关键词
Subject classifications: AMS(MOS): 65N30; CR:G1.8;
D O I
10.1007/BF01385626
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove superconvergence error estimates for the vector variable for mixed finite element approximations of second order elliptic problems. For the rectangular finite elements of Raviart and Thomas [19] and for those of Brezzi et al. [4] we prove that the distance in L2 between the approximate solution and a projection of the exact one is of higher order than the error itself. This result is exploited to obtain superconvergence at Gaussian points and to construct higher order approximations by a local postprocessing. © 1990 Springer-Verlag.
引用
收藏
页码:287 / 298
页数:12
相关论文
共 20 条
[1]  
AINSWORTH M, 1988, NA8803 NUM AN REP
[2]  
[Anonymous], 1977, MATH ASPECTS FINITE
[3]  
ARNOLD DN, 1985, RAIRO-MATH MODEL NUM, V19, P7
[4]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235
[5]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[6]  
BREZZI F, 1987, RAIRO-MATH MODEL NUM, V21, P581
[7]  
CLEMENT P, 1975, RAIRO ANAL NUMER, V9, P33
[8]   SUPERCONVERGENCE IN THE PRESSURE IN THE SIMULATION OF MISCIBLE DISPLACEMENT [J].
DOUGLAS, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (05) :962-969
[9]  
DOUGLAS J, 1985, MATH COMPUT, V44, P39, DOI 10.1090/S0025-5718-1985-0771029-9
[10]  
DOUGLAS J, 1985, MATH ANAL NUMER, V19, P297