MARKOVIAN NATURE OF THE 2-DIMENSIONAL SELF-AVOIDING RANDOM-WALK PROBLEM

被引:4
作者
WIEGEL, FW [1 ]
机构
[1] ECOLE POLYTECH FED LAUSANNE,PHYS THEOR LAB,CH-1007 LAUSANNE,SWITZERLAND
来源
PHYSICA A | 1979年 / 98卷 / 1-2期
关键词
D O I
10.1016/0378-4371(79)90185-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the number of self-avoiding random walks in the plane can be deduced - in the limit of very long walks - from an integral equation for a function of three variables. This demonstrates the Markovian nature of this problem in two dimensions. © 1979.
引用
收藏
页码:345 / 351
页数:7
相关论文
共 4 条
[1]   SOME PROBLEMS OF STATISTICAL PHYSICS OF POLYMER-CHAINS WITH VOLUME INTERACTION [J].
LIFSHITZ, IM ;
GROSBERG, AY ;
KHOKHLOV, AR .
REVIEWS OF MODERN PHYSICS, 1978, 50 (03) :683-713
[2]  
McKenzie D. S., 1976, Physics Reports. Physics Letters Section C, V27c, P35, DOI 10.1016/0370-1573(76)90028-4
[3]  
WIEGEL FW, 1977, J CHEM PHYS, V67, P469, DOI 10.1063/1.434891
[4]   COMBINATORIAL SOLUTION OF FREE FERMION MODEL [J].
WIEGEL, FW .
CANADIAN JOURNAL OF PHYSICS, 1975, 53 (12) :1148-1153