INTERIOR-POINT METHODS FOR CONVEX-PROGRAMMING

被引:45
作者
JARRE, F
机构
[1] Department of Operations Research, Stanford University, Stanford, 94305, CA
关键词
CONVEX PROGRAMMING; ELLIPSOIDAL APPROXIMATION; RELATIVE LIPSCHITZ CONDITION; SELF-CONCORDANCE;
D O I
10.1007/BF01371086
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is concerned with generalized convex programming problems, where the objective function and also the constraints belong to a certain class of convex functions. It examines the relationship of two basic conditions used in interior-point methods for generalized convex programming self-concordance and a relative Lipschitz condition-and gives a short and simple complexity analysis of an interior-point method for generalized convex programming. In generalizing ellipsoidal approximations for the feasible set, it also allows a geometrical interpretation of the analysis.
引用
收藏
页码:287 / 311
页数:25
相关论文
共 16 条
[1]  
DENHERTOG D, 1990, 9028 DELFT U TECHN R
[2]  
GROETSCHEL M, 1988, GEOMETRIC ALGORITHMS
[3]  
JARRE F, 1991, MATH PROGRAM, V49, P341
[4]  
JARRE F, 1989, LECT NOTES MATH, V1405, P69
[5]  
JARRE F, 1989, METHOD ANAL CTR SMOO
[6]  
JARRE F, 1988, LECTURE NOTES CONTRO, V111, P297
[7]  
LUSTIG IJ, 1990, SOR9003 PRINC U DEP
[8]  
MEHROTRA S, 1988, 8808 NW U DEPT IND E
[9]  
MEHROTRA S., 1990, 9003 NW U DEPT IND E
[10]  
MENNICKEN J, 1990, 202 U WURZB I AMG MA