STRUCTURE OF 4-WAY DNA JUNCTIONS CONTAINING A NICK IN ONE STRAND

被引:27
作者
POHLER, JRG [1 ]
DUCKETT, DR [1 ]
LILLEY, DMJ [1 ]
机构
[1] UNIV DUNDEE,DEPT BIOCHEM,CRC,NUCL ACID STRUCT RES GRP,DUNDEE DD1 4HN,SCOTLAND
关键词
DNA STRUCTURE; RECOMBINATION; HOLLIDAY JUNCTION; GEL ELECTROPHORESIS;
D O I
10.1006/jmbi.1994.1268
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have investigated the structure of the four-way helical DNA junction containing a single covalent discontinuity (nick) in one strand. These could result from either unitary strand exchange processes, or the action of nucleases upon a complete junction. We have employed gel electrophoresis methods to study the global configuration of arms in these junctions. We find that the junction carrying a nick in one strand undergoes a folding process in the presence of magnesium ion concentrations greater than 200 μM. Comparison of the electrophoretic mobilities of the six possible derivative junctions with two long and two shortened arms suggests that the folding occurs by coaxial stacking of pairs of helical arms, which is supported by the suppression of reactivity to osmium tetroxide of thymine bases at the centre of the junction. However, unlike the complete junction (i.e. the junction without nicked strands), the two stacked pairs of helices lie at a mutual angle of approximately 90°. The folding process generates two kinds of strands; two continuous strands and two exchanging strands. Two isomers of the right-angled stacked structure are possible, depending on the selection of stacking partners; it appears that the critical factor determining the relative stabilities of these isomers is the location of the nick. Thus the nicked junctions fold into the isomer that locates the nick on the exchanging strand. However, if the nick is not located at the point of strand exchange, the junction reverts to the stacked X-structure of the complete junction, even if the nick is moved by a single base-pair. These results suggest that the exchanging strands may be significantly strained in the structure of the complete four-way junction, such that an interruption to the continuity at this position allows the two stacked helices to disengage, and rotate to an angle where the overall electrostatic repulsion may be lower. © 1994 Academic Press Limited.
引用
收藏
页码:62 / 74
页数:13
相关论文
共 35 条
[1]   DEOXYNUCLEOSIDE PHOSPHORAMIDITES - A NEW CLASS OF KEY INTERMEDIATES FOR DEOXYPOLYNUCLEOTIDE SYNTHESIS [J].
BEAUCAGE, SL ;
CARUTHERS, MH .
TETRAHEDRON LETTERS, 1981, 22 (20) :1859-1862
[2]  
BLAKELY G, 1990, J BACTERIOL, V172, P6973
[3]   BRANCHED DNA MOLECULES - INTERMEDIATES IN T4 RECOMBINATION [J].
BROKER, TR ;
LEHMAN, IR .
JOURNAL OF MOLECULAR BIOLOGY, 1971, 60 (01) :131-&
[4]   CONSTRUCTION AND ANALYSIS OF MONOMOBILE DNA JUNCTIONS [J].
CHEN, JH ;
CHURCHILL, MEA ;
TULLIUS, TD ;
KALLENBACH, NR ;
SEEMAN, NC .
BIOCHEMISTRY, 1988, 27 (16) :6032-6038
[5]   A HOLLIDAY RECOMBINATION INTERMEDIATE IS TWOFOLD SYMMETRIC [J].
CHURCHILL, MEA ;
TULLIUS, TD ;
KALLENBACH, NR ;
SEEMAN, NC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (13) :4653-4656
[6]   THE SOLUTION STRUCTURE OF THE 4-WAY DNA JUNCTION AT LOW-SALT CONDITIONS - A FLUORESCENCE RESONANCE ENERGY-TRANSFER ANALYSIS [J].
CLEGG, RM ;
MURCHIE, AIH ;
LILLEY, DMJ .
BIOPHYSICAL JOURNAL, 1994, 66 (01) :99-109
[7]   FLUORESCENCE RESONANCE ENERGY-TRANSFER ANALYSIS OF THE STRUCTURE OF THE 4-WAY DNA JUNCTION [J].
CLEGG, RM ;
MURCHIE, AIH ;
ZECHEL, A ;
CARLBERG, C ;
DIEKMANN, S ;
LILLEY, DMJ .
BIOCHEMISTRY, 1992, 31 (20) :4846-4856
[8]   GEL-ELECTROPHORETIC ANALYSIS OF THE GEOMETRY OF A DNA 4-WAY JUNCTION [J].
COOPER, JP ;
HAGERMAN, PJ .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 198 (04) :711-719
[9]   GEOMETRY OF A BRANCHED DNA-STRUCTURE IN SOLUTION [J].
COOPER, JP ;
HAGERMAN, PJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (19) :7336-7340
[10]   EFFECTS OF BASE MISMATCHES ON THE STRUCTURE OF THE 4-WAY DNA JUNCTION [J].
DUCKETT, DR ;
LILLEY, DMJ .
JOURNAL OF MOLECULAR BIOLOGY, 1991, 221 (01) :147-161