TOTAL DUAL INTEGRALITY AND INTEGER POLYHEDRA

被引:61
作者
GILES, FR
PULLEYBLANK, WR
机构
[1] CORNELL UNIV,DEPT OPERAT RES,ITHACA,NY 14850
[2] CORE,B-3030 HEVERLEE,BELGIUM
关键词
D O I
10.1016/0024-3795(79)90018-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A linear system Ax ≤ b (A, b rational) is said to be totally dual integral (TDI) if for any integer objective function c such that max {cx: Ax ≤ b} exists, there is an integer optimum dual solution. We show that if P is a polytope all of whose vertices are integer valued, then it is the solution set of a TDI system Ax ≤ b where b is integer valued. This was shown by Edmonds and Giles [4] to be a sufficient condition for a polytope to have integer vertices. © 1979.
引用
收藏
页码:191 / 196
页数:6
相关论文
共 7 条
[1]   CERTAIN POLYTOPES ASSOCIATED WITH GRAPHS [J].
CHVATAL, V .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 18 (02) :138-154
[2]  
CUNNINGHAM W, 1976, 262 J HOPK U DEP MAT
[3]  
Edmonds J., 1970, COMBINATORIAL STRUCT, P69
[4]  
Edmonds J., 1977, ANN DISCRETE MATH, V1, P185, DOI DOI 10.1016/S0167-5060(08)70734-9
[5]  
GILES FR, 1975, THESIS U WATERLOO
[6]  
Gomory R.E, 1963, RECENT ADV MATH PROG, P269
[7]  
HILBERT D, 1890, MATH ANN, V36, P473