THE 3-DIMENSIONAL WIGNER-POISSON PROBLEM - EXISTENCE, UNIQUENESS AND APPROXIMATION

被引:110
作者
BREZZI, F [1 ]
MARKOWICH, PA [1 ]
机构
[1] TECH UNIV BERLIN,FACHBEREICH MATH,W-1000 BERLIN 12,GERMANY
关键词
D O I
10.1002/mma.1670140103
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of a unique, global classical solution of the quantum Vlasov-Poisson problem posed on the phase space R(x)3 x R(v)3. The proof is based on a reformulation of the quantum Vlasov-Poisson problem as a system of countably many Schrodinger equations coupled to a Poisson equation for the potential. The Schrodinger-Poisson problem is first analysed on a bounded domain in R(x)3 and the solution of the whole-space problem is then obtained by a limiting procedure in which the domains 'tend' to R(x)3.
引用
收藏
页码:35 / 61
页数:27
相关论文
共 10 条
[1]  
BARDOS C, 1985, ANN I H POINCARE-AN, V2, P101
[2]  
DIPERNA R, 1989, CEREMADE8824 U PAR D
[3]  
Markowich P. A., 1989, SEMICONDUCTOR EQUATI
[4]   AN ANALYSIS OF THE QUANTUM LIOUVILLE EQUATION [J].
MARKOWICH, PA ;
RINGHOFER, CA .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1989, 69 (03) :121-127
[6]  
NEUNZERT H, 1984, LECTURE NOTES MATH, V1048
[7]  
Pazy A., 1983, SEMIGROUPS LINEAR OP, DOI DOI 10.1007/978-1-4612-5561-1
[8]  
Reed M., 1975, METHODS MODERN MATH
[9]  
STEINRUCK H, 1989, ONE DIMENSIONAL WIGN
[10]   On the quantum correction for thermodynamic equilibrium [J].
Wigner, E .
PHYSICAL REVIEW, 1932, 40 (05) :0749-0759