CALCULATION OF ANOMALOUS EXPONENTS IN NONLINEAR DIFFUSION

被引:17
作者
ARONSON, DG [1 ]
VAZQUEZ, JL [1 ]
机构
[1] UNIV AUTONOMA MADRID,DEPT MATEMAT,E-28049 MADRID,SPAIN
关键词
D O I
10.1103/PhysRevLett.72.348
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a rigorous method based on the implicit function theorem for computing anomalous exponents for self-similar solutions to a variety of problems in continuum mechanics. Unlike formal perturbation methods which give only local results, our method often gives global results and analytic dependence of the exponent on parameters. We describe in detail the application of the method to source-type solutions to Barenblatt's equation for, elastoplastic flow, a problem which has been treated elsewhere by renormalization methods. We also briefly describe several other applications.
引用
收藏
页码:348 / 351
页数:4
相关论文
共 23 条
  • [1] Aronson D., 1980, P ADV SEM DYN MOD RE
  • [2] Aronson D. G., 1993, EUR J APPL MATH, V4, P65
  • [3] ARONSON DG, 1993, IMA1165 REP
  • [4] ARONSON DG, IN PRESS J NONLIN SC
  • [5] Barenblatt G.I., 1979, SIMILARITY SELF SIMI
  • [6] Barenblatt GI, 1978, SIMILARITY SELF SIMI
  • [7] BARENBLATT GI, 1983, NONLINEAR DYNAMICS T
  • [8] BARENBLATT GI, 1969, APPL MATH MECH, V33, P836
  • [9] BARENBLATT GI, 1955, IZV AKAD NAUK SSR TN, V2, P14
  • [10] BRICMONT J, 1993, COMMUN MATH PYS, V150, P183