THE GENE ENCODING HUMAN SPLICING FACTOR 9G8 - STRUCTURE, CHROMOSOMAL LOCALIZATION, AND EXPRESSION OF ALTERNATIVELY PROCESSED TRANSCRIPTS

被引:43
作者
POPIELARZ, M
CAVALOC, Y
MATTEI, MG
GATTONI, R
STEVENIN, J
机构
[1] UNIV STRASBOURG 1,INSERM,CNRS,INST GENET & BIOL MOLEC & CELLULAIRE,F-67404 ILLKIRCH GRAFFENS,FRANCE
[2] FAC MED TIMONE,INSERM,U406,UNITE GENET MED & DEV,F-13385 MARSEILLE,FRANCE
关键词
D O I
10.1074/jbc.270.30.17830
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The 9G8 factor is a 30-kDa member of the SR splicing factor family. We report here the isolation and characterization of the human 9G8 gene. This gene spans 7745 nucleotides and consists of 8 exons and 7 introns within the coding sequence, thus contrasting with the organization of the SC35/PR264 or RBP1 SR genes. We have located the human 9G8 gene in the p22-21 region of chromosome 2. The 5'-flanking region is GC-rich and contains basal promoter sequences and potential regulatory elements. Transfection experiments show that the 400-base pair flanking sequence has a promoter activity. Northern blot analysis of poly(A)(+) RNA isolated from human fetal tissues has allowed us to identify five different species, generated by alternative splicing of intron 3, which may be retained or excised as a shorter version, as well as the use of two polyadenylation sites. We also show that the different isoforms are differentially expressed in the fetal tissues. The persistence of sequences between exon 3 and 4 results in the synthesis of a 9G8 protein lacking the SR domain which is expected to be inactive in constitutive splicing. Thus, our results raise the possibility that alternative splicing of intron 3 provides a mechanism for modulation of the 9G8 function.
引用
收藏
页码:17830 / 17835
页数:6
相关论文
共 48 条
[1]   A DIFFERENTIALLY EXPRESSED MURINE RNA ENCODING A PROTEIN WITH SIMILARITIES TO 2 TYPES OF NUCLEIC-ACID BINDING MOTIFS [J].
AYANE, M ;
PREUSS, U ;
KOHLER, G ;
NIELSEN, PJ .
NUCLEIC ACIDS RESEARCH, 1991, 19 (06) :1273-1278
[2]   ANALYSIS OF THE RNA-RECOGNITION MOTIF AND RS AND RGG DOMAINS - CONSERVATION IN METAZOAN PRE-MESSENGER-RNA SPLICING FACTORS [J].
BIRNEY, E ;
KUMAR, S ;
KRAINER, AR .
NUCLEIC ACIDS RESEARCH, 1993, 21 (25) :5803-5816
[3]  
BLOOMFIELD CD, 1987, SEMIN ONCOL, V14, P372
[4]  
BREATHNACH R, 1981, ANNU REV BIOCHEM, V50, P349, DOI 10.1146/annurev.bi.50.070181.002025
[5]   FUNCTIONAL-ANALYSIS OF PREMESSENGER RNA SPLICING FACTOR SF2/ASF STRUCTURAL DOMAINS [J].
CACERES, JF ;
KRAINER, AR .
EMBO JOURNAL, 1993, 12 (12) :4715-4726
[6]  
CACERES JF, 1994, NATURE, V265, P1706
[7]   A NOVEL BIPARTITE SPLICING ENHANCER MODULATES THE DIFFERENTIAL PROCESSING OF THE HUMAN FIBRONECTIN EDA EXON [J].
CAPUTI, M ;
CASARI, G ;
GUENZI, S ;
TAGLIABUE, R ;
SIDOLI, A ;
MELO, CA ;
BARALLE, FE .
NUCLEIC ACIDS RESEARCH, 1994, 22 (06) :1018-1022
[8]   CHARACTERIZATION AND CLONING OF THE HUMAN SPLICING FACTOR 9G8 - A NOVEL 35 KDA FACTOR OF THE SERINE/ARGININE PROTEIN FAMILY [J].
CAVALOC, Y ;
POPIELARZ, M ;
FUCHS, JP ;
GATTONI, R ;
STEVENIN, J .
EMBO JOURNAL, 1994, 13 (11) :2639-2649
[9]  
DIRKSEN WP, 1994, J BIOL CHEM, V269, P6431
[10]   COMPILATION OF VERTEBRATE-ENCODED TRANSCRIPTION FACTORS [J].
FAISST, S ;
MEYER, S .
NUCLEIC ACIDS RESEARCH, 1992, 20 (01) :3-26