GROWTH-MECHANISM OF THIN SILICON-OXIDE FILMS ON SI(100) STUDIED BY MEDIUM-ENERGY ION-SCATTERING

被引:202
作者
GUSEV, EP
LU, HC
GUSTAFSSON, T
GARFUNKEL, E
机构
[1] RUTGERS STATE UNIV, SURFACE MODIFICAT LAB, PISCATAWAY, NJ 08855 USA
[2] RUTGERS STATE UNIV, DEPT PHYS & ASTRON, PISCATAWAY, NJ 08855 USA
关键词
D O I
10.1103/PhysRevB.52.1759
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The growth of ultrathin oxide films by the thermal oxidation of Si(100) at 1020-1170 K and in 10(-1)-10(-3) Torr O-2 pressure has been studied by high-resolution medium-energy ion-scattering spectroscopy (MEIS). To develop a fundamental understanding of very thin oxide film growth, we utilize sequential isotopic exposures (O-18(2) followed by O-16(2)). MEIS readily distinguishes O-18 from O-16 and the depth distribution for both species can be determined quantitatively with high accuracy. Our results show that the traditional phenomenological models for silicon oxidation cannot be applied to the initial oxidation. For very thin oxide films (15-25 Angstrom), we find overlapping isotope depth profiles in the film. For thicker films ( > 40 Angstrom), we find that several key aspects of the Deal-Grove model (oxygen diffusion to the Si-SiO2 interface and oxide formation at and/or near that interface) are consistent with our results. We also observe O-18 loss from the surface after reoxidation in O-16(2). The complex oxidation behavior during the initial oxidation is likely to be a combination of interfacial, near-interfacial, and surface reactions.
引用
收藏
页码:1759 / 1775
页数:17
相关论文
共 134 条