PARALLEL ALGORITHMS FOR HIERARCHICAL-CLUSTERING

被引:204
作者
OLSON, CF
机构
[1] Computer Science Department, Cornell University, Ithaca
基金
美国国家科学基金会;
关键词
HIERARCHICAL CLUSTERING; PATTERN ANALYSIS; PARALLEL ALGORITHM; BUTTERFLY NETWORK; PRAM ALGORITHM;
D O I
10.1016/0167-8191(95)00017-I
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Hierarchical clustering is a common method used to determine clusters of similar data points in multidimensional spaces. O(n(2)) algorithms are known for this problem [3,4,11,19]. This paper reviews important results for sequential algorithms and describes previous work on parallel algorithms for hierarchical clustering. Parallel algorithms to perform hierarchical clustering using several distance metrics are then described. Optimal PRAM algorithms using n/log n processors are given for the average link, complete link, centroid, median, and minimum variance metrics. Optimal butterfly and tree algorithms using n/log n processors are given for the centroid, median, and minimum variance metrics. Optimal asymptotic speedups are achieved for the best practical algorithm to perform clustering using the single link metric on a n/log n processor PRAM, butterfly, or tree.
引用
收藏
页码:1313 / 1325
页数:13
相关论文
共 21 条
[1]  
BENES VE, 1965, MATH THEORY CONNECTI
[2]  
BRUYNOOGHE M, 1989, P INT S HIGH PERF CO, P65
[3]   EFFICIENT ALGORITHMS FOR AGGLOMERATIVE HIERARCHICAL-CLUSTERING METHODS [J].
DAY, WHE ;
EDELSBRUNNER, H .
JOURNAL OF CLASSIFICATION, 1984, 1 (01) :7-24
[4]   EFFICIENT ALGORITHM FOR A COMPLETE LINK METHOD [J].
DEFAYS, D .
COMPUTER JOURNAL, 1977, 20 (04) :364-366
[5]  
Dijkstra EW., 1959, NUMER MATH, V1, P269, DOI DOI 10.1007/BF01386390
[6]   RELAXED HEAPS - AN ALTERNATIVE TO FIBONACCI HEAPS WITH APPLICATIONS TO PARALLEL COMPUTATION [J].
DRISCOLL, JR ;
GABOW, HN ;
SHRAIRMAN, R ;
TARJAN, RE .
COMMUNICATIONS OF THE ACM, 1988, 31 (11) :1343-1354
[7]  
JOLSON CF, 1994, UCBCSD94786 U CAL BE
[8]  
Joseph J., 1956, P AM MATH SOC, V7, P48, DOI [DOI 10.1090/S0002-9939-1956-0078686-7, 10.2307/2033241]
[9]   A GENERAL THEORY OF CLASSIFICATORY SORTING STRATEGIES .1. HIERARCHICAL SYSTEMS [J].
LANCE, GN ;
WILLIAMS, WT .
COMPUTER JOURNAL, 1967, 9 (04) :373-&
[10]   PARALLEL CLUSTERING ALGORITHMS [J].
LI, X ;
FANG, Z .
PARALLEL COMPUTING, 1989, 11 (03) :275-290