SOLVING MULTIPLE OBJECTIVE LINEAR-PROGRAMS IN OBJECTIVE SPACE

被引:27
作者
DAUER, JP
LIU, YH
机构
[1] UNIV NEBRASKA,DEPT MATH & STAT,LINCOLN,NE 68588
[2] UNIV NEBRASKA,DEPT MATH,OMAHA,NE 68182
关键词
efficient points; Multiple objective linear program; Pareto optimal;
D O I
10.1016/0377-2217(90)90010-9
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper presents an analysis of the objective space for a multiple objective linear program and develops a procedure for determining the nondominated extreme points and edges in objective space. Since not all extreme points (nor edges) of the constraint space necessarily map to extreme points (edges) of objective space, this technique analyzes a simpler structure than that analyzed by algorithms based on the extreme points of the constraint space. © 1990.
引用
收藏
页码:350 / 357
页数:8
相关论文
共 23 条
[1]  
COOPER L, 1974, METHODS APPLICATIONS
[4]   A MULTIOBJECTIVE OPTIMIZATION MODEL FOR WATER-RESOURCES PLANNING [J].
DAUER, JP ;
KRUEGER, RJ .
APPLIED MATHEMATICAL MODELLING, 1980, 4 (03) :171-175
[5]  
DUESING EC, 1978, THESIS U N CAROLINA
[6]  
DUESING EC, 1979, 3RD C MULT CRIT DEC
[7]   FINDING ALL EFFICIENT EXTREME POINTS FOR MULTIPLE OBJECTIVE LINEAR PROGRAMS [J].
ECKER, JG ;
KOUADA, IA .
MATHEMATICAL PROGRAMMING, 1978, 14 (02) :249-261
[8]   GENERATING ALL MAXIMAL EFFICIENT FACES FOR MULTIPLE OBJECTIVE LINEAR-PROGRAMS [J].
ECKER, JG ;
HEGNER, NS ;
KOUADA, IA .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1980, 30 (03) :353-381
[9]  
ELABYAD AM, 1986, THESIS U NEBRASKA LI
[10]  
Gal T., 1977, EUR J OPER RES, V1, P176, DOI [DOI 10.1016/0377-2217(77)90025-X, 10.1016/0377-2217(77)90025-X]