ELEMENTARY METHOD IN THE STUDY OF NONNEGATIVE CURVATURE

被引:71
作者
WU, H
机构
[1] University of California, Berkeley, Ca.
关键词
D O I
10.1007/BF02395057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:57 / 78
页数:22
相关论文
共 22 条
[1]   An extension of Schwarz's lemma [J].
Ahlfors, Lars V. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1938, 43 (1-3) :359-364
[2]  
Andreotti A., 1962, B SOC MATH FRANCE, V90, P193
[3]   STRUCTURE OF COMPLETE MANIFOLDS OF NONNEGATIVE CURVATURE [J].
CHEEGER, J ;
GROMOLL, D .
ANNALS OF MATHEMATICS, 1972, 96 (03) :413-443
[4]  
Cheeger J., 1972, J DIFFERENTIAL GEOM, V6, P119, DOI DOI 10.4310/JDG/1214430220
[5]   VISIBILITY MANIFOLDS [J].
EBERLEIN, P ;
ONEILL, B .
PACIFIC JOURNAL OF MATHEMATICS, 1973, 46 (01) :45-109
[6]  
ELENCWAJG G, 1976, ANN I FOURIER GRENOB, V25, P295
[8]  
Greene R. E., 1978, ABH MATH SEM HAMBURG, V47, P171
[9]   INTEGRALS OF SUBHARMONIC FUNCTIONS ON MANIFOLDS OF NONNEGATIVE CURVATURE [J].
GREENE, RE ;
WU, H .
INVENTIONES MATHEMATICAE, 1974, 27 (04) :265-298
[10]   APPROXIMATION THEOREMS, C INFINITY CONVEX EXHAUSTIONS AND MANIFOLDS OF POSITIVE CURVATURE [J].
GREENE, RE ;
WU, H .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (01) :101-104