A GENERAL, ENERGY-SEPARABLE POLYNOMIAL REPRESENTATION OF THE TIME-INDEPENDENT FULL GREEN OPERATOR WITH APPLICATION TO TIME-INDEPENDENT WAVEPACKET FORMS OF SCHRODINGER AND LIPPMANN-SCHWINGER EQUATIONS

被引:68
作者
HUANG, YH
KOURI, DJ
HOFFMAN, DK
机构
[1] UNIV HOUSTON,DEPT PHYS,HOUSTON,TX 77204
[2] IOWA STATE UNIV SCI & TECHNOL,DEPT CHEM,AMES,IA 50011
[3] IOWA STATE UNIV SCI & TECHNOL,US DOE,AMES LAB,AMES,IA 50011
关键词
D O I
10.1016/0009-2614(94)00590-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A general, energy-separable Faber polynomial representation of the full time-independent Green operator is presented. Non-Hermitian Hamiltonians are included, allowing treatment of negative imaginary absorbing potentials. A connection between the Faber polynomial expansion and our earlier Chebychev polynomial expansion (Chem. Phys. Letters 206 (1993) 96) is established, thereby generalizing the Chebychev expansion to the complex energy plane. The method is applied to collinear H + H-2 reactive scattering.
引用
收藏
页码:37 / 45
页数:9
相关论文
共 39 条