CLOSED-FORM SOLUTIONS FOR A CLASS OF OPTIMAL QUADRATIC REGULATOR PROBLEMS WITH TERMINAL CONSTRAINTS

被引:10
作者
JUANG, JN
TURNER, JD
CHUN, HM
机构
[1] CAMBRIDGE RES DIV PHOTON RES, CAMBRIDGE, MA 02139 USA
[2] CHARLES STARK DRAPER LAB INC, CAMBRIDGE, MA 02139 USA
来源
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME | 1986年 / 108卷 / 01期
关键词
CONTROL SYSTEMS - Optimization;
D O I
10.1115/1.3143741
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Closed-form solutions are derived for coupled Riccati-like matrix differential equations describing the solution of a class of optimal finite time quadratic regulator problems with terminal constraints. Analytical solutions are obtained for the feed-back gains and the closed-loop response trajectory. A computational procedure is presented which introduces new variables for efficient computation of the terminal control law. Two examples are given to illustrate the validity and usefulness of the theory.
引用
收藏
页码:44 / 48
页数:5
相关论文
共 17 条
[1]  
Armstrong E. S., 1980, ORACLS DESIGN SYSTEM
[2]  
Brockett, 1970, FINITE DIMENSIONAL L
[3]  
Bryson A.E, 1975, APPL OPTIMAL CONTROL
[4]   DIRECT METHODS FOR SOLVING SYMMETRIC INDEFINITE SYSTEMS OF LINEAR EQUATIONS [J].
BUNCH, JR ;
PARLETT, BN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1971, 8 (04) :639-&
[6]   ON SOLUTIONS OF RICCATI EQUATION IN OPTIMIZATION PROBLEMS [J].
FRIEDLAND, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1967, AC12 (03) :303-+
[7]  
KALMAN RE, 1966, NASA CR475 REPT
[8]   ON AN ITERATIVE TECHNIQUE FOR RICCATI EQUATION COMPUTATIONS [J].
KLEINMAN, DL .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1968, AC13 (01) :114-+
[9]  
Kwakernaak H., 1972, LINEAR OPTIMAL CONTR
[10]   19 DUBIOUS WAYS TO COMPUTE EXPONENTIAL OF A MATRIX [J].
MOLER, C ;
VANLOAN, C .
SIAM REVIEW, 1978, 20 (04) :801-836